光质和光周期对山白兰苗木生长、生理的影响

2024-01-16 13:28:48谢慈江何福英韦秋梅
广西植物 2023年12期
关键词:白兰光周期增长量

谢慈江, 何福英, 刘 莉, 韦秋梅, 杨 梅*

(1. 广西大学 林学院, 南宁 530004; 2. 广西南宁良凤江国家森林公园, 南宁 530031 )

光照作为植物生长最关键的自然环境因子,在整个生命周期中起着重要作用(李雨霏等,2021)。因存在独特的光谱吸收特性,植物在不同生长阶段所需要的最适光周期不同(王玉卓等,2019),不同光质对植物的影响也具有差异。前人在红蓝光质及其多种复合光质组合处理对植物生长、生理等方面进行了广泛研究。例如,红蓝组合光质对朱顶红(郄亚微,2020)和石蒜幼苗(李青竹等,2019)的生长、叶片光合色素合成和生物量积累都起到了积极的促进作用,在红蓝组合光中添加绿光不利于茄子幼苗(杨玉凯等,2018)和人参果组培苗(王玉英等,2020)叶绿素的合成,紫光处理使黄色甜椒幼苗叶片株高、生物量、光合色素较白光大幅下降(白生文等,2017);而在红蓝组合光中增加25%的绿光(2R1B1G)显著促进了白及叶片生长和提高了叶绿素含量(王婷婷等,2021),在红蓝光基础上适宜增加紫光提高了水培芹菜的产量和品质(刘玉兵等,2020),补充紫绿光且光周期为16 h·d-1对红心杉组培苗的生长生理特性具有积极作用(徐圆圆,2017)。由此可见,在人工光源下,红蓝光是设施栽培中应用最多的复合光质,对植物生长具有促进作用,而其他光质对植物的作用效果并不一致。目前,关于植物对光源响应的研究较多集中在蔬菜、果树以及特色经济林,针对林木尤其是珍贵树种的研究并不多见,不同光质组合对林木生长的影响还需要进一步探讨。

山白兰(Micheliabaillonii)修订名为合果木,别名拟含笑、山桂花等,属于木兰科中的寡种属(合果木属),珍稀常绿阔叶高大乔木,自然分布于我国云南,近年来引种至广西和福建等地。山白兰树形笔直挺拔,木材耐腐抗蛀、纹理天然美观,是南方优良的用材及景观树种(申礼凤等,2011)。由于山白兰种子发芽率低,自然更新能力差,并且生境受到较多的人为干扰及环境变化,其天然种群数量逐渐减少,因此需要通过提升山白兰的种苗人工繁育技术以扩大其种群数量。目前,关于山白兰苗期的研究主要集中在生长特性(刘永刚等,2019)、施肥效应(黄振声,2015)和育苗容器(邱琼等,2018)等方面,山白兰苗期高光强适应能力不足(郭昉晨等,2015),晴朗天气下的光强或轻度遮阴(透光率72.3%)一般有利于幼苗生长(马小英和焦根林,2008;刘金炽等,2020),但不同光质对其生长的影响尚不清楚。光质影响植株的形态建成、光合生理和物质代谢等过程。红光和蓝光可被光合色素更有效地吸收,红光促进茎增长、提高叶面积,促进植株地上部分质量增加和碳水化合物的合成;蓝光促进气孔的开放和根系增长,调控叶绿素的合成(严宗山等,2020);绿光可以诱导植物叶柄伸长的避荫应答(吴艳等,2020)和PEPC基因的表达(王婷婷等,2021);紫光能够延缓植株衰老,提高氮代谢相关酶活性,促进氮素吸收(刘玉兵等,2020)。为探讨山白兰对光质和光周期的响应,本研究以一年生山白兰为对象,以发光二极管(light-emitting diode,LED)为人工光源,设置红蓝复合光(8R1B、6R1B)、红蓝紫绿复合光(8R1B1P1G、6R1B1P1G)以及两个光周期(12、16 h·d-1),分析山白兰苗木生长特点、光合色素和内源激素的变化及其相关性,探讨其对不同光质、光周期的响应,为利用人工光源进一步优化容器育苗、组培快繁技术提供依据,对于开展山白兰光环境适应性、更新机制的研究具有重要的参考价值。

1 材料与方法

1.1 材料

供试材料为广西良凤江国家森林公园(108°21′ E、22°40′ N)提供的生长健康、长势均匀的一年生山白兰幼苗 [平均株高(20.16 ± 1.86) cm、平均地径(7.05 ± 0.23) mm],移植于直径10 cm、高15 cm的育苗杯中,每杯中定植1株,置于苗圃大棚内培养,苗木培养基质为70%森林土+20%椰糠+10%珍珠岩。LED灯管(T5 2835L,深圳伟信力光电有限公司)规格为1 200 mm×24 mm,每根灯管功率为16 W,光质配比由灯珠数量决定。

1.2 设计

2017年4月10日—9月10日在广西大学林学院苗圃示范基地(108°22′ E、22°48′ N)进行试验。鉴于610~720 nm和400~510 nm为植物吸收可见光的主要波段,而较少集中于510~610 nm(周锦业,2013),光照环境处理设白光(W)为对照,红蓝复合光(8R1B、6R1B)、红蓝紫绿复合光(8R1B1P1G、6R1B1P1G)与12、16 h·d-1光周期(光期/暗期分别为12 h/12 h、16 h/8 h)两两组合,不同光质配比是基于Xu等(2020)的研究确定,共10个处理,具体设计见表1,设置3个重复,每个重复10株苗木。全钢架结构人工培养棚内设有可调节的人工光源,每个处理设2个灯管,灯管垂直高度为75~85 cm(可调节,具体高度以光照强度相同时为宜),光照强度为(350±10) μmol·m-2·s-1(利用MQ-500 手持式光量子测量仪测定计算,Apogee Instruments 公司,美国),设遮光材料于不同处理之间避免光源彼此干扰。光周期采用定时器调控,12、16 h·d-1光周期光照时间分别为7:00—19:00、5:00—21:00。育苗期间进行常规苗期管理,每隔两天通风1次(20:00—23:00)。

表1 不同LED光处理设计配比与参数Table 1 Design ratios and parameters of different LED light treatments

1.3 测定指标和方法

1.3.1 生长、生物量指标测定 植株苗高采用0.1 cm精度直尺测定,地径采用0.02 mm精度游标卡尺测定。苗高、地径增长量为最终值(2017年9月10日测得)与初始值(2017年4月10日测得)的差值。叶面积采用YMJ-B便携式叶面积仪(河南云飞科技有限公司,中国)测定生长中等水平的完全展开叶。2017年9月选取3株平均木进行植株总鲜重测定,杀青烘干至恒重后用电子天平进行称量,测得根、茎、叶等器官的干重和苗木总干重。苗木质量指数(seedling quality index,SQI)计算公式如下:

SQI=苗木总干重/[(苗高最终值/地径最终值)+(茎干重/根干重)]。

1.3.2 叶绿素、内源激素测定 每个重复随机选2株苗木,从各个部位采集不同成熟程度的叶片,将其混合后用以测定生理指标。叶绿素a、叶绿素b和类胡萝卜素的含量参照邱念伟等(2016)的方法:称取1 g样品,采用80%丙酮∶乙醇=2∶1的混合液提取叶绿素,放置黑暗中24 h后采用分光光度计分别在波长470、649、665 nm下测定吸光值,根据相关公式计算色素含量。

称取0.5 g混合样品,液氮磨粉后,加入2 mL含50 mg聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP)的80%甲醇进行提取,弱光冰浴研磨后,转入10 mL离心管置4 ℃下提取12 h后离心(8 000 r·min-1,20 min),C-18萃取后采用酶联免疫法(enzyme linked immunosorbent assay,ELISA)测定植物生长素(indoleacetic acid,IAA)、赤霉素(gibberellins,GA3)、玉米素(zeatin riboside,ZR)、脱落酸(abscisic acid,ABA)的含量,并计算相关内源激素比值,试剂盒购自南京建成科技有限公司。

1.3.3 数据处理 光质、光周期不仅单独影响山白兰苗木质量,而且彼此之间存在交互作用。因此,采用模糊数学的隶属函数法,综合评价不同光质和光周期处理的培育效果。隶属函数计算公式如下:

隶属值U(Xi)=(Xi-Ximin)/(Ximax-Ximin)。

式中:Xi为指标测定值;Ximax和Ximin为所有处理中某项指标的最大值和最小值。

若某指标与苗木生长呈负相关,该指标隶属值通过反隶属函数计算,计算各个处理下不同指标的隶属值平均值,平均值越大表明苗木培育效果越好(张乐华等,2014)。反隶属值计算公式如下:

反隶属值U(Xi)=1-(Xi-Ximin)/(Ximax-Ximin)。

通过Microsoft Excel 2016软件对试验所得数据进行整理,利用IBM SPSS Statistics 26.0软件进行数据统计与分析(双因素方差分析、差异显著性检验以及Pearson相关系数计算),使用Origin 2021软件进行图表绘制,图表中数据为平均值±标准差。

2 结果与分析

2.1 光质和光周期对山白兰苗木生长指标的影响

光质、光周期及其交互作用对苗高增长量、叶面积和总鲜重影响极显著(P<0.01),但光周期及其交互作用未对地径增长量产生明显影响(表2)。由图1可知,同一光质处理下,16 h·d-1光周期下,山白兰苗木的总干重和苗木质量指数均比12 h·d-1光周期大。16 h·d-1光周期下,8R1B处理下的苗高增长量显著高于其他光质处理,叶面积和植株重量与6R1B处理在一个较高的水准,显著大于W和6R1B1P1G处理;8R1B1P1G处理下的苗高增长量、地径增长量、叶面积、植株重量和苗木质量指数较6R1B1P1G处理高。其中,16×8R1B处理下的苗高增长量、叶面积和苗木质量指数最大,分别为21.84 cm、158.39 cm2和2.43,总鲜重(59.88 g)和总干重(13.14 g)则在16×6R1B处理下达到最大。

不同小写字母表示处理间在0.05水平差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences between treatments (P<0.05). The same below.图1 不同光质及光周期下山白兰苗生长变化Fig. 1 Changes of growth of Michelia baillonii seedlings under different light qualities and photoperiods

表2 不同光质和光周期下山白兰苗生长指标的双因素方差分析Table 2 Two-way ANOVA analysis on growth indexes of Michelia baillonii seedlings under different light qualities and photoperiods

2.2 光质和光周期对山白兰苗木光合色素含量的影响

光质及其交互作用对山白兰叶绿素a、叶绿素b、叶绿素a/b和类胡萝卜素的影响显著(P<0.05),光周期对叶绿素a影响极显著(P<0.01)(表3)。由图2可知,同一光质处理下,16 h·d-1光周期下的山白兰苗木叶绿素a总体高于12 h·d-1光周期下的。16 h·d-1光周期下, 8R1B和6R1B为较有利于山白兰合成叶绿素a和类胡萝卜素的光质,8R1B处理下的叶绿素a/b显著高于W、6R1B1P1G和8R1B1P1G处理的。8R1B1P1G处理下的叶绿素a、类胡萝卜素和叶绿素a/b均较6R1B1P1G处理下的高。其中,16×8R1B处理下的叶绿素a、类胡萝卜素和叶绿素a/b最大,分别为3.88、0.48 mg·g-1和2.32,叶绿素b(3.23 mg·g-1)在16×6R1B1P1G处理下达到最大。

表3 不同光质和光周期下山白兰苗光合色素含量的双因素方差分析Table 3 Two-way ANOVA analysis on photosynthetic pigment contents of Michelia baillonii seedlings under different light qualities and photoperiods

Chl a. 叶绿素a; Chl b. 叶绿素b; Chl a+b. 叶绿素a+b; Chl a/b. 叶绿素a/b。下同。Chl a. Chlorophyll a; Chl b. Chlorophyll b; Chl a+b. Chlorophyll a+b; Chl a/b. Chlorophyll a/b. The same below.图2 不同光质及光周期下山白兰苗光合色素变化Fig. 2 Changes of photosynthetic pigment of Michelia baillonii seedlings under different light qualities and photoperiods

2.3 光质和光周期对山白兰苗木内源激素含量的影响

光质、光周期及其交互作用对ZR、ABA以及(IAA+GA3+ZR)/ABA影响极显著(P<0.01),光质对GA3和IAA / ABA影响显著(P<0.05),光周期对IAA和IAA/ABA影响极显著(P<0.01)(表4)。由图3可知,同一光质处理下,16 h·d-1光周期下山白兰苗木具有较高的IAA、ZR、内源激素比值和较低的ABA。16 h·d-1光周期下,8R1B1P1G处理下所有内源激素类指标较6R1B1P1G均有不同程度的提升,8R1B处理下ZR显著高于6R1B。其中,16×6R1B处理下的IAA、IAA/ABA和(IAA+GA3+ZR)/ABA最大,分别为67.19 ng·g-1、1.43和1.75,16×8R1B1P1G处理下GA3最高,为10.95 ng·g-1,ZR(6.94 ng·g-1)和ABA(45.07 ng·g-1)在16×8R1B下分别达到最大值和最小值。

图3 不同光周期和光质下山白兰苗内源激素的变化Fig. 3 Changes of endogenous hormone of Michelia baillonii seedlings under different light qualities and photoperiods

表4 不同光质和光周期下山白兰苗内源激素含量的双因素方差分析Table 4 Two-way ANOVA analysis on endogenous hormone contents of Michelia baillonii seedlings under different light qualities and photoperiods

2.4 山白兰苗木指标相关性分析及综合评价

使用Pearson相关系数,对不同光环境下各生长和生理指标进行关联性特征比较,由图4可知,除苗高增长量、叶面积和植株重量与叶绿素a+b以外,所有生理指标均显著相关,而地径增长量与光合色素和内源激素的相关性较弱。苗高增长量与ZR、IAA/ABA、(IAA+GA3+ZR)/ABA的相关系数较高(r>0.80),叶面积和植株重量与IAA/ABA、(IAA+GA3+ZR)/ABA也存在较高的相关系数(r>0.75),同时植株重量与叶绿素b(|r|>0.75),苗高增长量、叶面积与ABA(|r|>0.82)之间呈显著负相关。

右侧刻度为相关系数(r)。Scale on the right side is the correlation coefficient (r).图4 山白兰苗木生长指标与叶绿素和内源激素相关性分析 Fig. 4 Correlation analysis between growth indexes and chlorophyll and endogenous hormone of Michelia baillonii seedlings

由于单个指标无法全面反映苗木的生长状况,因此文中在分析各个指标相关性的基础上,采用隶属值来反映苗木各部分之间的协调与平衡关系(张乐华等,2014;姚甲宝等,2019),本研究从16个指标中,选出苗高和地径增长量、叶面积、总干重以及光合色素和内源激素等11个指标对不同光环境的培育效果进行综合评价,以选出最有利于促进山白兰苗木生长的光环境。由表5可知,隶属值最高的处理是16×8R1B,说明该光环境下山白兰苗木各生理指标平衡,生长明显优于对照处理,表明高比例红光和较长光周期有利于促进山白兰苗木生长发育,而紫、绿光的添加无显著影响。

表5 光质和光周期处理山白兰苗木的指标隶属函数分析(截取综合排名前6的处理)Table 5 Membership function analysis of indexes of Michelia baillonii seedlings treated with different light qualities and photoperiods (treatments of the overall Top 6 treatments are selected)

3 讨论

3.1 山白兰苗木生长、生物量对光质和光周期的响应

植物主要通过红/远红光受体、蓝光/近紫外光受体、紫外光受体等来感知光信号,对生长发育、生理代谢进行调节(Su et al., 2014; Ouzounis et al., 2015; Manivannan et al., 2015)。当光周期为16 h·d-1时,8R1B光质处理下的苗高增长量、叶面积、苗木质量指数显著高于8R1B1P1G;较6R1B11P1G处理,6R1B处理下苗高增长量、叶面积、植株重量和苗木质量指数更高,可见,红蓝组合光更有利于山白兰苗木的生长,这可能是由于山白兰幼苗对紫光、绿光的需求量小,而红光与叶绿素(640~663 nm)、光敏色素(600~700 nm)的最大吸收波长接近,参与调节植物光合机构运营和同化物运输(Appelgren, 1991; Baroli et al., 2008),蓝光可调控植物气孔开放(Christie, 2007; Gruszecki et al., 2010)。同时,高比例的红光更有利于山白兰苗高的增长和生物量的累积,而随着蓝光比例的增加,其苗高增长量与叶面积减小,这与桑树幼苗(胡举伟等,2018)、红树莓(郭芳等,2016)和香果树(肖志鹏等,2020)对光质的响应相似。而红蓝组合光中紫绿光质的添加对山白兰生长影响不大,这可能与植物对光质的响应具有一定的物种特性有关,吴芳兰等(2022)在研究光环境对另一个木兰科树种香梓楠幼苗生长时也发现类似规律。光周期能够诱导、调控并促进营养生长相关基因的表达,姚宁等(2022)研究发现延长光周期可提高栎属植物的相对生长速率。本研究结果表明,光质一定时,延长光周期(16 h·d-1)可提高山白兰的苗高增长量、叶面积及总干重,这是由于植物合成与分配光合作用同化物的时长受光周期的影响(Dong et al., 2016),山白兰进行光合作用的时间随着光周期的延长而增加,表现为足量的有机物得以合成,生长发育和生物量累积加快,但山白兰地径增长量对光周期响应不显著,说明山白兰光合作用制造的同化物在苗期时很大程度消耗在株高和叶片的生长上。

3.2 山白兰苗木光合色素含量对光质和光周期的响应

光合色素通过吸收、传递光能促进植株生长发育,主要包括叶绿素和类胡萝卜素,其合成受外界光环境影响显著(邢阿宝等,2018),而植物对光能的利用程度可以通过叶绿素a/b来表现。光周期为16 h·d-1时,8R1B较8R1B1P1G、6R1B较6R1B1P1G的叶绿素a/b更高,可见山白兰对红蓝光质光能的利用程度更高。同时,高比例的红光有利于山白兰叶绿素a、类胡萝卜素含量的提升,随着蓝光比例的增大,植株叶绿素b含量增加,而枫香幼苗(王冬雪等,2019)表现出与山白兰相反的趋势,这可能是物种差异对不同光谱组合适应性差异的体现。复合光质对植物的作用机理并不是单纯叠加,12×8R1B1P1G、16×6R1B1P1G处理下的叶绿素b含量显著高于12×8R1B和16×6R1B,表明植物叶绿素受光质加性效应的影响,该效应随着光质种类的丰富更加突出,紫绿光质能够延缓山白兰叶片叶绿素b的降解从而增加其含量,转基因741杨叶片(张文林等,2016)同样发现加性效应的存在。此外,光质一定时,光周期的延长有利于山白兰叶绿素a含量的提升,适宜的光周期有利于山白兰提高光合色素含量和光能利用能力。

3.3 山白兰苗木内源激素对光质和光周期的响应

光环境能通过影响植物体内内源激素含量的高低和平衡(韩东花等,2021)来调控植株生长发育(王海波等,2017)。ABA具有促进植物衰老的作用,而IAA、GA3、ZR能够延缓衰老(Jibran et al., 2013),IAA/ABA和(IAA+GA3+ZR)/ABA的变化可以作为调控衰老过程的重要生理信号(Ohashi-Kaneko et al., 2007)。光周期为16 h·d-1时,8R1B1P1G处理下山白兰IAA、GA3的含量、IAA/ABA和(IAA+GA3+ZR)/ABA的比值显著高于 6R1B1P1G,8R1B处理下ZR含量显著高于 6R1B。可见光周期一定时,高红光比例的复合光更有利于山白兰叶片促生类激素的合成,这是由于红光能够利用光敏色素调控促生类激素合成酶的活性,而蓝光对吲哚乙酸(IAA)氧化酶的活性有促进作用,在观光木(刘涛等,2022)和桑树(胡举伟等,2018)对光质的响应中也发现类似规律。光质一定时,16 h·d-1光周期下山白兰IAA、ZR的含量、 IAA/ABA和 (IAA+GA3+ZR)/ABA的比值较12 h·d-1提升明显,光周期的延长有利于山白兰的促生类激素含量的提高,可能是由于绿色植物的主要光受体PHYB(樊文娜等,2014)通过光周期来调控内源激素合成和平衡。

3.4 山白兰苗木对光环境响应的综合评价

植物对外界环境的适应能力无法通过单一指标来体现,研究中常通过苗木的隶属值进行综合评价(汪丛啸等,2022)。本研究中,16×8R1B处理下山白兰苗木的隶属值(0.908)和苗木质量指数(2.43)最高,该处理下的山白兰苗木苗高增长量(21.84 cm)与叶面积(158.39 cm2)最高,同时具有最高的ZR(6.94 ng·g-1)和最低的ABA(45.07 ng·g-1)含量,可见通过选择合适的光周期和光质,可以改善山白兰苗木内源激素水平,促进苗期山白兰的生长发育,提升苗木品质。同时,苗高增长量、叶面积和植株重量与叶绿素a、类胡萝卜素、IAA、GA3、ZR的含量、叶绿素a/b、IAA/ABA和(IAA+GA3+ZR)/ABA的比值间均存在显著正相关,说明叶绿素、类胡萝卜素和内源激素与山白兰苗木生长关系密切,光周期和光质可以直接影响山白兰苗木的光合色素和内源激素,从而对苗木生长进行调控,但具体作用机制有待进一步研究。

4 结论

不同光质和光周期通过对山白兰幼苗光合色素和内源激素的影响,调控其苗木生长,苗高增长量、叶面积和植株重量与叶绿素a、类胡萝卜素、IAA、GA3、ZR的含量、叶绿素a/b、IAA/ABA和(IAA+GA3+ZR)/ABA的比值间均存在显著正相关。高红光比例的红蓝复合光源和延长光周期有利于山白兰的生长发育,而红蓝紫绿复合光对促进其生长无显著影响。因此,16 h·d-1×8R1B处理是山白兰苗木培育较为适宜的光环境,该处理下山白兰幼苗光合色素、内源激素的含量均保持在较高水平,有利于改良山白兰幼苗品质。

猜你喜欢
白兰光周期增长量
大豆光周期适应性研究进展
遗传(2023年9期)2023-09-25 09:31:44
不同光周期对甜椒幼苗生长的影响
心上的白兰树
乘风破“难”开新局 白兰姐妹伴身边——晋江市妇联改革创新见实效
海峡姐妹(2020年11期)2021-01-18 06:16:00
童年的白兰鸽
不同配比的基质对不同多肉植物生长的影响
现代园艺(2020年9期)2020-05-24 09:22:06
不同坡度和不同坡向对金花茶生长量的影响
现代园艺(2019年1期)2019-02-18 06:59:42
金都1号火龙果果实发育过程中品质的变化规律分析
今天的光周期是多少?
计算今天的光周期