陈观秀, 周鸿凯,2, 王盼盼, 许江环, 郭海峰, 刘梦霜, 杨 善,2*
(1. 广东海洋大学 滨海农业学院, 广东 湛江 524088; 2. 国家耐盐碱水稻技术创新中心华南中心, 广东 湛江 524088 )
土壤盐碱化已成为一个世界性难题,我国东北、华东和华南沿海地区的盐碱化土壤约占全国盐碱化土壤的15%,是影响地区农作物生产关键的非生物胁迫因素之一(Kordrostami et al., 2016;顾骁,2019; 杨洪涛,2019)。水稻(Oryzasativa)是世界上最重要的粮食作物之一,全球超过半数人口以大米为主食。水稻对NaCl盐中度敏感,而我国华南滨海地区盐渍地中的盐分主要以NaCl为主(鄂志国和张丽靖,2010; 王恩旭等,2016)。由此表明,土壤盐碱化已成为制约我国水稻生产的主要因素之一,严重影响粮食安全(巫明明等,2022)。因此,耐盐碱水稻可作为利用盐碱地的先锋作物,不仅可以增加粮食总产量,而且可以提高盐碱地的利用率(Qin et al., 2020)。所以,探究不同水稻材料应答盐胁迫的生理机制,对耐盐碱水稻新品种选育及其高产高效栽培技术开发具有重要参考与指导意义。
盐胁迫下,植物生长受阻,具体表现为株高变矮、叶片枯黄卷曲、生物量减少(马帅国等,2020)。同时,植物机体会受到生理干旱影响、特殊离子毒害以及正常代谢损伤,引起膜脂过氧化,降低清除活性氧(reactive oxygen species,ROS)、光合速率和抗氧化酶转化能力,严重时还会引起植株死亡(Rahnama et al., 2010; 孙思淼等,2020)。为了适应盐碱化生长环境,植物经过漫长进化,形成了一系列生理性调节机制,主要包括渗透调节、ROS清除系统以及离子调节等(胡文成,2017)。在不同盐浓度胁迫条件下,作物体内会迅速合成可溶性糖、蛋白质、脯氨酸、甜菜碱等渗透调节物质,以提高细胞内渗透压,利于从外界吸收水分,缓解生理性缺水(石婧等,2020; 颜佳倩等,2022)。此外,在盐胁迫期间,植物体内过多的Na+会破坏活性氧清除系统,导致ROS物质,如过氧化氢(hydrogen peroxide,H2O2)、超氧阴离子(superoxide anion, O2-)的增加,造成细胞膜脂过氧化,进而导致丙二醛(malondialdehyde,MDA)大量积累;与此同时,植株体内抗氧化酶活性被激活,消除过量ROS,从而提高植株耐盐性(林兵等,2022)。在水稻中,盐胁迫导致了过氧化物酶(peroxidase,POD)与超氧化物歧化酶(superoxide dismutase,SOD)活性、谷胱甘肽(glutathione,GSH)与抗坏血酸(ascorbic acid,AsA)含量以及MDA和H2O2含量均会升高,而耐盐水稻材料则表现出更强的清除ROS能力(Hellou et al., 2012; 王俊斌等,2012)。在水稻生理研究上,常用K+/Na+相对含量来判断植株耐盐性强弱,比值越大,耐盐越强(王旭明等,2018)。但是,不同部位K+/Na+比值差异很大,不能仅以K+/Na+比值差异来断定水稻耐盐性强弱。盐胁迫下,水稻根系聚集Na+最多(K+/Na+比值较低),叶片和叶鞘吸收较多K+(K+/Na+比值较高)以维持植株正常生理代谢活动(陈惠哲等,2007)。针对K+和Na+无机离子调控分子机理的研究报道层出不穷,目前在水稻中通过图位克隆的耐盐调控基因SKC1(Ren et al., 2005)、OsHKT1;1(Chuamnakthong et al., 2019)和OsHKT1;5(Kobayashi et al., 2017),均与无机离子调控相关。然而,水稻耐盐生理与分子调控机理所涉及的信号转导、生理、生化、代谢调控通路异常复杂,需要化繁为简,由点到面,一步一步深入研究,所以对盐胁迫下耐盐水稻表型及其耐盐生理效应进行研究,可为今后解析水稻耐盐调控机制提供理论依据。
HD96-1,是湛江海河交错潮汐带种植的古老耐盐碱地方稻种,具有耐盐性强、抗病虫害、耐淹等特性。然而,对不同盐浓度胁迫下HD96-1与弱耐盐性水稻93-11之间的生理调控差异尚不清楚。本研究拟以HD96-1与93-11为材料,测试并分析不同盐浓度胁迫对水稻幼苗生长与生理效应的影响,旨在探究两个水稻材料对不同盐浓度胁迫的生理响应差异,进而揭示耐盐水稻HD96-1的生理响应机制,为耐盐水稻种质创新利用与新品种选育提供理论参考,进一步完善耐盐碱水稻种质资源创新利用和新品种培育技术体系。
水稻材料HD96-1,由广东海洋大学于1996年采集,俗称长毛谷、赤禾等,耐盐性强。水稻材料93-11,又名扬稻6号,国审稻2001002,耐盐性弱。以上水稻材料,由广东海洋大学滨海农业学院提供。
1.2.1 水稻幼苗培养 挑选健康饱满的水稻种子用3%的H2O2浸泡消毒30 min后,先用蒸馏水冲洗数次,然后将消毒好的种子加上少量蒸馏水放置在28 ℃的恒温箱中浸种24 h,之后平铺到浸湿的双层发芽纸的塑料托盘上催芽,在这期间一直保持托盘湿润。5 d以后,挑选萌发且长势良好的种子移到装有1 L Yoshida营养液(北京酷来搏科技有限公司,http://www.coolaber.com/Product_List.asp?keyword=Yoshida)的96孔黑色水培盒里进行水培。置于26 ℃的培养间(光照14 h和黑暗10 h)中培养到3叶期,每隔3 d更换1次营养液。
1.2.2 盐胁迫处理 盐浓度筛选试验:当幼苗长到3叶期时,用NaCl(化学纯,西陇化工股份有限公司)配制不同盐浓度的营养液模拟盐胁迫试验。设0、60、120、180、240 mmol·L-15个NaCl浓度,置于26 ℃的培养间(光照14 h和黑暗10 h)分别处理7 d;同等培育条件下,全部处理用NaCl浓度为0 mmol·L-1的营养液培育10 d,观察96株水稻幼苗,并统计死苗率,确定适宜的试验盐浓度。盐胁迫处理试验:当幼苗长到3叶期,挑选长势一致的幼苗,设3个不同NaCl浓度(0、60、120 mmol·L-1),每个浓度3个重复(即3个水培盒,每个水培盒种96株幼苗),分别处理7 d以后进行取样。取样时,分别随机选取不同处理组的10株幼苗测定相关农艺性状。每个水培盒剩余约70株幼苗,全部剪取其地上部分(包含假茎与叶片)用于各项生理指标的测定试验,同一处理的3个重复样品充分混合后,统一装入自封袋中,用液氮速冻,保存在-80 ℃冰箱中备用。
1.3.1 生长指标的测定 株高:假茎基部到叶片顶端的长度,刻度尺测量。假茎宽:假茎基部离根1 cm处的宽度,不锈钢数显卡尺测量。干重:于烘箱中将称过鲜重的植株烘干,105 ℃放置30 min,之后用80 ℃ 烘干至恒重,使用万分之一分析天平分别称量地上部和地下部干重(屈成等,2018)。每个处理组重复3组,每组选取8株幼苗,取平均值。
1.3.2 生理指标的测定 水稻生理指标测定主要参照王文龙(2014)、陈建勋和王晓峰(2001)以及高俊凤(2006)的方法,具体如下。(1)丙二醛(MDA):硫代巴比妥酸显色法。(2)可溶性糖:蒽酮比色法。(3)可溶性蛋白:考马斯亮蓝G-250染色法。(4)脯氨酸:磺基水杨酸法。(5)超氧化物岐化酶(SOD):氮蓝四唑光还原法。(6)过氧化物酶(POD):愈创木酚比色法。(7)过氧化氢酶(catalase,CAT):紫外吸收法。(8)抗坏血酸过氧化物酶(ascorbate peroxidase,APX):紫外吸收法。(9)过氧化氢(H2O2)含量:碘化钾分光光度计。(10)超氧阴离子(O2-)含量:羟胺氧化法。(11)抗坏血酸(AsA)含量:比色法。(12)谷胱甘肽(GSH)含量:二硫代硝基苯甲酸法。
1.3.3 数据处理 试验数据用Microsoft Excel 2019 软件进行整理,并用SPSS 25.0 软件进行数据统计分析,采用Duncan 法对不同处理间各测定指标进行差异显著分析,利用Pearson法进行相关性分析(双尾检验),显著性水平为P<0.05,用Origin 2018软件进行相关图表绘制。
为了筛选适合HD96-1生长的盐胁迫浓度,待幼苗生长至3叶期,在5个不同NaCl浓度(0、60、120、180、240 mmol·L-1)的营养液处理7 d后,接着用不含NaCl的营养液进行恢复10 d。结果如图1所示,HD96-1在各浓度处理后的存活率分别为100%、95%、83%、30%和0%。由此可见,存活率大于50%且适合的盐胁迫浓度为60、120 mmol·L-1,后续试验选择这两个盐浓度进行处理。
A. 不同NaCl浓度处理7 d后的表型; B. 不同NaCl浓度处理7 d后,用不含NaCl营养液恢复培养10 d后的表型。A. Phenotypes after 7 d treatments with different NaCl concentrations; B. After 7 d treatments with different NaCl concentrations, the phenotype after 10 d of culture is restored with nutrient solution without NaCl.图1 不同NaCl浓度处理下HD96-1(A)的表型以及恢复以后的表型(B)Fig. 1 Phenotype of HD96-1 treated with different NaCl concentrations (A) and phenotype after water recovery (B)
与对照(0 mmol·L-1NaCl)相比,两个水稻材料幼苗生长参数对盐胁迫响应有所差异(表1)。HD96-1株高、假茎宽下降幅度低于93-11,盐胁迫对93-11幼苗生长影响更显著。60 mmol·L-1NaCl处理HD96-1和93-11,幼苗株高分别降低了3.39%和6.35%,在120 mmol·L-1NaCl处理时,分别降低了11.07%和20.05%。HD96-1假茎宽在60 mmol·L-1和120 mmol·L-1NaCl 处理下较对照分别下降了6.69%和7.29%,93-11假茎宽分别降低了11.89%和16.77%,存在显著差异。
表1 不同盐浓度胁迫下HD96-1和93-11的生长参数Table 1 Growth parameters of HD96-1 and 93-11 under different concentrations of salt stress
93-11地上部干重和根系干重显著降低,HD96-1则与之相反,但不显著,同时两者根冠比也未表现出显著差异。随着盐胁迫浓度升高,与对照相比,HD96-1地上部干重分别增加了13.21%和11.79%,根系干重分别升高了13.73%和5.88%;93-11地上部干重分别降低了19.58%和34.39%,根系干重分别降低了23.26%和32.56%。HD96-1和93-11根冠比均比对照组增大,但前者在120 mmol·L-1处理下比60 mmol·L-1处理有所降低,后者相反,说明了水稻根系对无机离子胁迫应激敏感,而HD96-1面对胁迫适应性更强。
2.3.1 对幼苗膜脂过氧化作用的影响 如图2所示,盐胁迫下HD96-1和93-11幼苗的MDA、O2-及H2O2含量均有所增加,并且HD96-1的O2-含量和H2O2含量低于93-11。与对照组相比,处理组HD96-1和93-11的MDA含量增幅不大,均无显著差异,但O2-含量均显著增加,其中HD96-1分别增加了10.27%和45.61%,93-11分别增加了32.26%和70.47%。两个水稻材料H2O2含量均在60 mmol·L-1处理下达到最高,分别增加了34.20%和86.87%,在120 mmol·L-1处理下分别增加了25.21%和81.44%。
不同小写字母表示同个水稻材料之间不同处理差异显著(P<0.05)。下同。Different lowercase letters indicate significant differences among different treatments of the same rice material (P<0.05). The same below.图2 盐胁迫下两个水稻材料的MDA(A)、H2O2(B)及 O2- (C) 含量Fig. 2 Contents of MDA(A), H2O2 (B) and O2- (C) in two rice materials under salt stress
2.3.2 对幼苗渗透调节物质的影响 如图3所示,HD96-1和93-11幼苗的脯氨酸和可溶性糖含量均随着盐浓度升高而增加,但在HD96-1中的增加幅度高于93-11。相比对照,盐胁迫下HD96-1可溶性糖含量达到显著差异,而93-11未达到显著差异。与对照相比,HD96-1和93-11的可溶性蛋白含量均在60 mmol·L-1处理下达到最高含量;在120 mmol·L-1处理下HD96-1可溶性蛋白含量增加了0.54%,而93-11可溶性蛋白含量却显著下降。
图3 盐胁迫下两个水稻材料的脯氨酸(A)、可溶性糖(B)及可溶性蛋白(C)含量Fig. 3 Contents of proline (A), soluble sugar(B) and soluble protein(C) in two rice materials under salt stress
2.3.3 对幼苗抗氧化酶的影响 如图4所示,盐胁迫下,两个水稻材料过氧化氢酶(CAT)、超氧化物歧化酶(SOD)及抗坏血酸过氧化物酶(APX)的活性变化趋势相同,在2种盐浓度胁迫下均显著上升且在60 mmol·L-1处理下达到峰值。在60 mmol·L-1处理下,HD96-1的CAT、SOD、APX活性分别是对照的92.53%、26.02%和250.77%,在120 mmol·L-1处理下分别是对照的60.54%、25.47%和181.30%;93-11在60 mmol·L-1和120 mmol·L-1处理下,CAT、SOD、APX活性分别是对照的43.94%、11.47%、130.77%和37.87%、9.95%、79.81%。由此表明,HD96-1的CAT、SOD、APX活性增幅明显高于93-11。与对照相比,盐胁迫下两个水稻材料过氧化物酶(POD)活性变化较小,均无显著差异。
图4 盐胁迫下两个水稻材料的CAT(A)、SOD(B)、POD(C)以及APX(D)活性Fig. 4 Activities of CAT(A), POD(B), SOD(C) and APX(D) in two rice materials under salt stress
2.3.4 对幼苗抗氧化剂的影响 如图5所示,两种水稻幼苗体内抗坏血酸(AsA)含量在盐胁迫下均显著升高(P<0.5),其中HD96-1在2种盐浓度胁迫下的增幅分别为96.57%和87.35%,93-11增幅分别为40.99%和56.45%。谷胱甘肽(GSH)含量随盐浓度的增加而逐渐升高,且HD96-1在120 mmol·L-1处理下存在显著差异,HD96-1和93-11在2种盐胁迫下的增幅分别为6.02%、24.95%和0.98%、4.34%。由此可知,两个水稻材料的AsA、GSH含量在对照情况下几乎一样,但盐胁迫下HD96-1的含量均高于93-11,表明盐胁迫下HD96-1可以积累更多抗氧化剂来清除体内活性氧。
图5 盐胁迫下两个水稻材料的AsA(A)和GSH(B)含量Fig. 5 Contents of AsA(A) and GSH(B) in two rice materials under salt stress
Pearson相关性分析(表2)表明,在盐胁迫下水稻幼苗生长指标(地上部干重、根系干重、株高)与H2O2、O2-呈极显著负相关,即H2O2和O2-的含量越高,植株越生长不好。脯氨酸与AsA、GSH、SOD、APX呈极显著正相关,可溶性糖与AsA、GSH、CAT、SOD、APX呈极显著正相关,即盐胁迫下,水稻CAT、SOD、APX酶的活性越高,AsA、GSH的含量越多,脯氨酸和可溶性糖的含量就越高,受到伤害越少。
表2 生长参数、渗透调节物质和抗氧化系统的相关性矩阵Table 2 Correlation matrix of growth parameters, osmoregulatory substances and antioxidant system
在遭受盐胁迫时,植物不能移动,唯有进行适应性调节以抵御盐胁迫所带的损伤,这些适应性调节包括生长发育调节、生理调节(如离子平衡、渗透调节、营养平衡、活性氧清除等)、转录水平调节、代谢物调节,以及表观遗传学的DNA甲基化、小分子RNA调节等(Van Zelm et al., 2020)。其中,盐胁迫下植物生长发育的调节最为直观。因此,研究人员常以观察植物表型来判断所遭受的盐胁迫程度,甚至作为评判植物耐盐性的参考指标之一。由于水稻为中度盐敏感植物,因此盐胁迫下水稻生长发育会明显受到抑制,一般表现为根系生长受抑制、叶片早衰、株高变矮、育性降低等(Jing et al., 2019)。本研究中,盐胁迫下HD96-1和93-11株高和假茎宽均减小,后者受抑制程度更大。同时,HD96-1根系干重、地上部分干重、根冠比有所增加,但未达到显著差异;93-11根系干重、地上部分干重则显著下降。由此说明,同等盐胁迫条件下两个水稻材料表型产生了一定差异。有研究认为,在低盐胁迫下,耐盐性相对较好的水稻品种,干物质重受影响较小,或有所增加,耐盐性差的品种则下降明显(魏征等,2021;王洋等,2022)。因此,HD96-1对盐胁迫的适应性与耐受性优于93-11。究其表型差异的原因,可能涉及到信号转导、生理、基因表达、代谢物等多方面的调控机制差异。
本研究从生理方面剖析了两个水稻材料应答盐胁迫的差异,包括抗氧化调节和渗透调节。结果发现,随着盐浓度升高,HD96-1和93-11的丙二醛(MDA)和活性氧(ROS)含量也随之增加,但前者的积累量小于后者,与汪洪艳等(2019)对‘海稻86’的研究结果一致。分析其MDA和ROS增加的原因,可能是由于植物光能利用和碳同化受到抑制,从而增加了光合链中电子转移到O2的概率,促进了活性氧(ROS)的产生,如H2O2和O2-,引起氧化胁迫,MDA大量聚集,破坏植物膜结构(王洋等,2022)。这表明HD96-1产生的ROS较93-11少,可能是其光合系统受到抑制较小。为了减少ROS积累和修复细胞膜结构,植物活性氧清除系统会迅速反应,快速合成抗氧化物质。活性氧清除系统主要包括酶促系统和非酶促系统,酶促系统主要有SOD、POD、CAT和APX等抗氧化酶,非酶促系统主要是AsA、GSH等抗氧化剂(胡文成,2017)。其中,SOD是活性氧清除的第一道防线,也是最有效的抗氧化酶,它可以通过歧化作用将O2-生成为低毒的H2O2,接着CAT、POD和APX将H2O2分解为H2O,通过这种途径减缓盐分对植株的危害(Bose et al., 2014; Bhatt et al., 2020)。本研究中,盐胁迫下两个水稻材料的CAT、SOD、APX活性均表现先升高后下降的趋势,并且HD96-1增幅高于93-11,表明在水稻中CAT、SOD、APX活性受盐胁迫诱导显著提高,而且HD96-1清除活性氧能力高于93-11。符秀梅等(2010)也有类似发现,盐胁迫下水稻幼苗期SOD与POD的活性呈先增加后降低的趋势,而CAT变化无明显规律。此外,植物可以通过抗坏血酸-谷胱甘肽(AsA-GSH)循环系统来清除体内过多的H2O2含量 (申洁等,2021)。本研究中,HD96-1和93-11的AsA、GSH含量均有所升高,但HD96-1的增幅及含量要高于93-11。Chawla等(2013)研究也有相同的发现,盐胁迫下耐盐品种Pokkali和CSR-1的SOD、CAT、POX、APX活性,以及AsA、GSH含量均高于盐敏感品种IR28和MI-48。因此,进一步表明,盐胁迫下HD96-1较93-11具有更强的抗氧化调控能力。抗氧化酶活性、AsA和GSH含量均受到上游基因表达的调控,前人有报道对OsAPX2(Zhang et al., 2013)、OsGSTL2(Kumar et al., 2013)、OsGRX1(Lima-Melo et al., 2016)等基因调控抗氧化物质代谢的功能进行了探究。但是,这些抗氧化物质应答盐胁迫的“信号转导-基因表达-代谢物合成”调控机制仍需要进一步深入研究。
盐胁迫除了会诱导大量ROS的产生来引起活性氧清除系统失衡外,还会造成外界环境的渗透势降低,水稻根系难以吸收水分,从而造成生理干旱(黄洁等,2020),在此逆境下,植株通过自身积累渗透调节物质来降低细胞水势,维持正常的细胞膨压。脯氨酸、可溶性糖和可溶性蛋白是其体内重要的渗透调节物质。脯氨酸可作为渗透调节物质,也可与一些氧自由基发生反应,清除活性氧,还可氧化产生ATP为植物生长提供能量,在生物合成中主要受吡咯琳-5-羧酸合成酶(P5CS)、鸟氨酸转氨酶(OAT)酶调控(汪忠杰,2020)。有研究表明,盐胁迫下,脯氨酸含量与盐胁迫浓度呈正相关,耐盐植物体内的脯氨酸、可溶性糖和可溶性蛋白含量大幅度增加(Li et al., 2017;卢楠楠等,2017)。本研究中,HD96-1和93-11在受到盐胁迫之后,体内积累的脯氨酸和可溶性糖也随之增加,用以维持渗透平衡来抵御盐害,而HD96-1合成积累更多渗透调节物质,表现出更强的渗透调节能力。这一结果与Chen等(2017)的研究结果相似。Sripinyowanich等(2013)通过外源ABA调控水稻耐盐性研究,发现OsP5CS1和OsP5CR均受ABA和盐胁迫诱导上调表达,脯氨酸含量也上调,说明盐胁迫下水稻脯氨酸含量受ABA诱导调控。然而,de Ollas等(2015)研究认为,水分胁迫下拟南芥体内脯氨酸合成与体内ABA含量无显著相关。因此,盐胁迫下水稻体内脯氨酸合成调控是否依赖于ABA信号调控途径需要进一步试验验证。
盐胁迫下,两个水稻材料体内活性氧、丙二醛含量增加,氧化胁迫造成代谢紊乱;同时,渗透胁迫造成生理干旱,使得植株吸水困难,生长受阻,使得株高和假茎宽减小。然而两个水稻材料应答盐胁迫的生理效应存在差异,HD96-1具有更强的抗氧化和渗透调节能力,可有效缓解盐胁迫带来的不利影响,使得生长发育受抑制程度小于93-11。