金欣鹏,柏兆海,马 林**
(1.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室石家庄 050022; 2.中国科学院大学 北京 100049 )
农业面源污染是造成我国地下水硝酸盐污染、地表水富营养化等生态环境问题的重要原因[1-3]。饮用高浓度硝酸盐的地下水,还会产生健康风险[4]。过去30年间,不同学者对华北平原[5-6]、东北平原[7-8]、成都平原[9]、滇池流域[10]和长三角[11-12]等地区地下水硝酸盐超标状况进行了研究,发现至少20%的监测点硝酸盐浓度超过WHO 饮用水标准[50 mg()·L−1],而在华北和长三角地区这一比例更高。
养分管理是提高养分资源利用效率、减少氮磷环境盈余和损失的重要途径[13-14]。欧美发达国家以养分管理为核心,不断制定和完善相关政策法规和技术措施,有效缓解了农业面源污染。在清洁水法案指导下,美国将最佳养分管理技术(BMPs)作为核心策略,以流域水质监测、评价和管理为手段,通过工程、耕种和管理措施的结合,主要从源头减量和过程阻控方面实现了农业面源污染的有效治理[15]。硝酸盐指令则在很大程度上改变了欧盟各成员国养分管理方式,成为落实水框架指令和控制农业面源污染的重要政策法规。该指令以水质监测为基础,根据地表水和地下水养分浓度和富营养化程度识别并划分硝酸盐脆弱区,进而按划分结果分区制定和实施适宜的养分管理策略,同时欧盟委员会每5年对成员国落实硝酸盐指令的效果进行监测和评估。该类基于硝酸盐脆弱区的养分管理策略有效地缓解了成员国硝酸盐污染状况[16]。
近年来,我国养分管理和面源污染研究工作取得了较大进展,但多数研究仍集中于农田和养殖场尺度[17-18],缺少养分损失脆弱区划定的科学方法,更缺乏基于不同养分损失脆弱区的管理策略和技术途径[19]。因此,本文利用水质监测数据、文献资料和NUFER (NUtrient flows in Food chains,Environment and Resources use)模型,综合考虑人体健康饮水需求和各地自然条件(河网、土壤质地、地形等),划分了我国养分损失脆弱区; 在此基础上,为不同养分损失脆弱区选取适宜的技术组合,制定区域氮磷消减草案,并通过情景分析量化了其在不同养分损失脆弱区的消减效果,以期充分发挥各项减排技术潜力,提升氮磷消减综合效益,为农业面源污染阻控、农业绿色发展提供科学支撑。
通过收集公开发表的文献和环境监测资料[5-7,20-27],获取了1253 条地下水硝酸盐浓度数据,作为划分养分损失脆弱区的基础。利用NUFER 模型[28-29]对潜在养分损失脆弱区进行识别,其中模型运行所需变量数据(主要包括分县化肥用量、作物播种面积和产量、畜禽数量、人口数量及食物消费量等)来源于统计年鉴[30],养分含量、养分去向参数分别来源于文献资料和调查数据[31],空间数据来源于中国科学院资源环境科学数据中心(RESDC)的土地利用/覆被数据[32-33]和中国综合农业区划[34]等。
1.2.1 养分损失脆弱区的划定草案
按地下水硝酸盐污染风险高低,本文将全国范围内的耕地划分为养分损失脆弱区、潜在养分损失脆弱区和非养分损失脆弱区。根据区划原则,养分损失脆弱区的划分草案如下(图1):
1)养分损失脆弱性划分原则: 根据欧盟国家硝酸盐脆弱区划分规则、WHO 饮用水标准和我国地下水环境标准,将11.5 mg·L−1的水体硝态氮浓度定为养分损失脆弱区划定的阈值,实地监测数据大于该阈值的区域划分为养分损失脆弱区。潜在养分损失脆弱区基于养分流动模型结果确定,将地下水硝态氮浓度阈值(11.5 mg·L−1)转化为单位耕地面积农田氮素径流和淋溶损失的数量,参考De Vries 等[35]的计算公式,潜在脆弱区划分的阈值定为径流氮=28.3 kg·hm−2或淋溶氮=22.6 kg·hm−2,大于上述阈值的区域划分为养分损失潜在脆弱区。其余水体硝酸盐及氮磷负载较低的农田被划定为非脆弱区。
2)养分损失脆弱区划定: 脆弱区包括地下水硝酸盐浓度超标区域及水网临近区域。将地下水硝酸盐浓度点位数据进行空间插值,识别出浓度大于11.5 mg·L−1的区域并将其纳入硝酸盐脆弱区。另一方面,以3 km 为缓冲距离对线状水网进行缓冲,得到水网临近区域范围。最后,合并上述两类区域并与耕地栅格叠加,即得到养分损失脆弱区。
3)潜在养分损失脆弱区划定: 利用NUFER 模型计算各县氮素径流和淋溶损失强度,并分别与28.3 kg·hm−2和22.6 kg·hm−2的阈值进行对比,只要其中1 个指标超过阈值,即被提取出来与耕地栅格叠加,划分为潜在养分损失脆弱区。需要注意的是NUFER 县域模型运行前需要利用坡度、降水和土壤类型等空间分布数据,对农田氮磷径流、淋溶和侵蚀损失参数进行计算,具体计算方法见Lu 等[36]。
4)非养分损失脆弱区划定: 该类区域水体硝酸盐及氮磷浓度较低,暂且不会造成污染风险。本文将其定量为单位农用地面积氮素径流与淋溶损失强度均未超过各自阈值(分别为28.3 kg·hm−2和22.6 kg·hm−2)的区域。使用栅格计算器和重分类工具将硝酸盐脆弱区和潜在脆弱区从耕地栅格中去除,剩下的耕地即为非养分损失脆弱区。
1.2.2 基于养分损失脆弱区的氮磷淋溶分区消减草案
分区差异化管理是本文确立的养分环境损失消减的原则,其中分区是考虑农业生态区(图2)和养分损失脆弱性的综合分区,按养分损失脆弱性确定消减目标及其管控程度。分区养分消减草案如下:
1)基于我国农业生态区的养分损失脆弱区划分:将《中国农业区划》所确定的9 个一级区和38 个二级区矢量化,反映各农业生态区的自然、社会和经济条件的差异(图2)。养分损失脆弱区划反映养分管理现状和环境损失风险。将上述两者进行叠加,即得到我国各农业生态区的养分管理脆弱性区划图。
2)基于养分损失脆弱区的氮磷淋溶分区消减策略: 根据各农业生态区和亚区的养分损失脆弱性,确定养分管控的严格程度和区域消减策略(表1)。脆弱区氮磷淋溶消减策略立足于整个食物系统,通过系统内养分循环措施,减少食物系统的养分投入和环境排放,由于这些区域已出现水体污染问题,配套最严格的养分环境排放阻控技术和管理措施。潜在脆弱区养分消减策略则聚焦于农牧生产系统,主要关注化肥和畜禽粪尿有机肥的科学施用,结合水肥一体化和畜禽粪尿全链条养分损失阻控。非养分脆弱区则主要关注作物生产系统水肥优化管理。
表1 基于养分损失脆弱区的氮磷淋溶消减策略Table 1 Regional mitigation strategies of nitrogen and phosphorus leaching based on nutrient losses vulnerable zone
3)基于养分损失脆弱区的氮磷淋溶区域消减技术列单: 根据不同区域的消减策略,收集与养分管理、面源污染减排技术相关文献并提取减排参数,从而制定氮磷养分淋溶消减技术列单(表2)。在作物生产系统中,从科学施肥、养分管理和水肥优化等角度,收集氮磷淋溶消减技术措施; 在畜禽生产系统,考虑畜禽粪尿的“饲喂—圈舍—储藏—处理—施用”全链条管理,筛选减排技术措施; 在家庭消费系统则主要围绕优化居民膳食结构、减少食物浪费和加强人粪尿循环利用3 个方面筛选技术措施; 同时还针对各个系统间的养分循环,筛选技术列单。技术的选取不仅要考虑各农业生态区和亚区的自然条件和种植结构,更要充分考虑养分损失的脆弱性。
4)基于养分损失脆弱区的氮磷淋溶区域消减效果评价: 根据我国农业生态区和养分损失脆弱区,制定氮磷淋溶区域消减策略,选取消减技术,并通过文献收集相应减排参数,形成消减草案。通过更新模型排放参数、养分流向参数将分区氮磷消减策略体现在养分流动模型(NUFER)上,最后重新运行模型对消减效果进行评估。考虑到养分管理和各种养分形态环境损失的系统性和关联性,不应局限于农田氮磷淋溶损失,还应该统筹考虑食物系统氮磷的淋溶、径流和氨挥发等环境损失,综合评价消减效果。
养分损失脆弱区和潜在脆弱区覆盖了我国52%的耕地,脆弱区广泛分布于我国农业主产区,包括松嫩-三江平原、黄淮海平原、包头以东的长城沿线农牧区、汾渭平原、长江中下游平原和四川盆地等地区(图3)。脆弱区农田养分损失与农业生产密切相关,化肥过量投入是主要原因。潜在脆弱区也同样分布在黄淮海区、长江中下游区和华南区,且位于脆弱区周边,表明农田养分损失具有空间聚集性。华南区与黄淮海、长江中下游区相比,养分损失脆弱区较少而潜在脆弱区较多,这是由于华南区水体质量监测数据和报道较少,被划入脆弱区的区域偏少,而实际上该区域化肥投入水平高,消纳养分的耕地少,单位耕地面积氮素径流量及淋溶量较高。
表2 养分管理和环境减排技术列单[37-38]Table 2 Techniques list of nutrient management and environmental emission mitigation[37-38]
续表2
氮素是影响农牧业生产的重要因素,也是造成农业面源污染最重要的污染因子之一。因此,本文以氮素为例介绍主要研究结果。
2.2.1 氮肥用量减施效果
2012年,全国化肥氮施用量为3.06×107t,其中黄淮海区、长江中下游区、东北区和西南区施氮量合计占全国化肥氮施用量比例超3/4。高强度施氮现象也集中于上述区域,尤其以黄淮海平原、松嫩-三江平原区最高,高施氮县域占区内总县域的比例约80%(图4a)。通过基于养分损失脆弱区的区域养分管理措施,化肥氮施用总量可以减少到1.58×107t,减少比例达48%(图4a_IM)。
在养分损失脆弱区,按食物系统养分平衡计算合理施肥量,通过促进食物系统有机废弃物循环,减少外源的氮肥投入,脆弱区氮肥施用量减少56%。在潜在养分损失脆弱区,按农牧系统养分平衡确定合理施氮量,通过有机肥部分替代化肥,减少潜在脆弱区氮肥施用量59%。氮肥用量减施超过1×104t县域分布与畜禽养殖大县分布一致,说明畜禽粪尿有机肥替代是实现农牧系统养分平衡和化肥减施的关键。在非养分损失脆弱区,按作物系统养分供需平衡确定科学施氮量,一定程度上优化了施氮格局,例如: 内蒙古-新疆一带合理氮素投入量较现状有所增加,这是对该区域河套平原和甘新主产区氮素亏缺现象所做的优化。
2.2.2 氮素淋溶损失消减效果
2012年,氮淋溶强度超过22.6 kg·hm−2的区域覆盖耕地面积3.1×107hm2,主要分布在黄淮海区、长江下游平原和闽南-粤中-海南岛一带,上述3 个区域超标比例在50%以上(图4b)。通过基于养分损失脆弱区的区域养分管理和环境阻控措施,氮淋溶超标区内耕地面积减少至1.9×107hm2,消减比例约为40%(图4b_IM)。
淋溶超标严重的区域,如黄淮海及闽南-粤中-海南岛一带,消减比例分别仅为30%和35%,低于全国平均水平,主要由于这些区域实行一年两熟或一年多熟的高强度耕作制度。进一步分析发现,黄淮海地区作物产出量大,即使科学施肥、粪尿还田,输入的养分仍然处于较高水平,淋溶风险依然存在。闽南-粤中-海南岛一带虽然总体养分输入量不大,但该区域承载养分的耕地面积较小,氮素淋溶强度难以下降至低风险水平(图4b_IM)。
2.2.3 氮素径流损失消减效果
2012年,氮素径流损失强度大于28.3 kg·hm−2的区域覆盖耕地面积2.5×107hm2,主要分布在黄淮平原南部、长江下游平原、华南以及四川盆地(图4c)。通过基于养分损失脆弱区的养分管理和环境损失阻控措施,氮径流损失超标区内耕地面积减少至7.0×106hm2,减少比例为72%(图4c_IM)。
分析各区域径流损失消减效果,发现四川盆地、黄淮平原-长江中下游地区消减效果不显著,而华南和东北消减效果较好,径流超标区消减比例高达90%。四川盆地当前养分输入量与作物养分需求相差不大,因此基于作物养分需求推荐的化肥和有机肥施用量与现状养分输入量也相差不大,径流氮素损失消减效果有限。长江下游地区水网密布、年均降雨量大,径流风险高,加之耕地破碎、面积较小,径流氮脆弱区消减效果也不明显。华南和东北地区径流氮素显著减少,主要是由于二者现状施肥量远超作物需求量,并且都有足够的粪尿有机肥替代化肥,实施平衡施肥和相关阻控措施后,可使氮径流损失量明显降低。
2.2.4 氨气排放消减效果
2012年,我国氨挥发总量为1.4×107t,氨挥发强度超过60 kg·hm−2的区域广泛分布于东北区、长江中下游区、四川盆地、黄淮海区和华南区,包含耕地面积5.1×107hm2(图4d)。实施基于养分损失脆弱区的养分管理和氨减排措施后,东北区、黄淮海区、黄土高原和西南区氨挥发消减效果较好,高强度氨挥发区域(60 kg·hm−2)消减比例在80%以上(图4d_IM)。华南区和甘新区氨挥发减排效果一般,高强度氨挥发区域消减比例不足30%。主要是因为甘新区大部分属于非脆弱区,平衡施肥后氮投入量较2012年有所增加,氨挥发量也会相应增加; 而华南区耕地面积小,有机肥替代化肥后,氨挥发仍较高。优化后,高强度氨挥发区域缩小至江南丘陵山地区、华南、黄淮海区和长江下游平原一带,且各区域的高氨挥发面积比例减少(图4d_IM)。
2.2.5 养分损失潜在脆弱区面积变化
通过分区养分管理措施,各单项环境指标发生了变化,潜在养分损失脆弱区面积也随之变化。结果显示,潜在养分损失脆弱区面积减少为2.2×1010hm2,减少比例为51%(图5)。潜在脆弱区减少比例较高的区域为黄土高原、东北、西南和长江中下游区,但区内平原地带消减比例相对较低。从消减的绝对面积来看,长江中下游、东北和黄淮海地区位居前三,占总消减面积约70%(图5)。
本研究提出了基于我国农业生态区的养分损失脆弱区划定草案。我国养分损失脆弱区和潜在脆弱区覆盖了 52%的耕地,广泛分布于主要农产品产区,包括松嫩-三江平原、黄淮海平原、包头以东的长城沿线农牧区、汾渭平原、长江中下游平原和四川盆地等区域,呈显著的空间聚集性。农业面源污染已成为我国水体污染的主要贡献源。张维理等[5]和赵同科等[6]在华北和环渤海地区进行的地下水硝酸盐调查充分揭示了我国北方地区严重的硝酸盐污染现状; 长江中下游地区[11-12,20]的地下水硝酸盐超标率也较高。因此加强面源污染区域消减策略研究迫在眉睫。本文提出的养分损失脆弱和潜在脆弱区的划分草案为满足上述需求提供了可能。
本研究探索了基于养分损失脆弱区的分区氮磷消减策略和技术措施。Lu 等[36]从农牧系统养分平衡和农田氮素损失阻控技术出发,探究了中国硝酸盐脆弱区消减潜力,在其最优情景下,潜在硝酸盐脆弱区可消减至基线情景的48%。本研究综合考虑了养分的各种损失途径,进一步完善了面源污染消减草案,潜在养分损失脆弱区消减结果与Lu 等[36]的结果相近,可减至基线情景的49%。欧美发达国家针对农业面源问题,已形成较为完善的治理体系,Velthof 等[39]利用情景分析的方法定量了欧盟硝酸盐法令及其管理措施的实施效果,结果表明,2008年欧盟27 国实行硝酸法令比不实行减少了16%的淋溶和径流氮损失。MITERRA-EUROPE 模型评估了欧盟27 国的减排技术效果: 科学施肥可使硝酸盐淋溶量减少28%,氨排放减少8.9%[40]。本文提出的基于养分损失脆弱区的分区氮磷淋溶消减草案为我国面源污染政策制定和减排效果评估提供科学依据。
分区养分管理和面源污染消减政策应该注重定量评估和阈值管控,包括摸清现状和分区调控两部分。摸清现状是在考虑各地自然条件和农事活动的基础上,科学划分养分损失脆弱区。分区调控是基于养分损失脆弱区,通过确立分区养分消减策略,因地制宜选取相应的技术组合并评估其消减效果。区域养分损失消减草案的制定有利于形成农业面源污染多维管控机制,促进农业绿色发展的良性循环。在政策制定层面,分区养分消减方案可作为环境及农业绿色发展政策的行动指南,弥补以往政策量化不足和“一刀切”的缺点[41]。但上述实践还需进一步依托于高校和科研机构的科学分析、试验数据以及第三方的监测评估。
本文提出了我国养分损失脆弱区划分草案和面源污染区域消减草案,但是还有很多的不足,因此,我们提出了以下几项未来工作的展望:
1)完善生态监测网络: 主要任务在于构建高精度的农业、生态和环境基础信息监测网和数据库,既能为现有研究和政策制定提供可靠的数据和验证方法,也是进一步细化我国养分损失脆弱区划和政策制定的重要基础。
2)加强成本效益分析: 本研究的减排策略和技术草案尚未考虑各项技术的成本和效益,未来的研究应当通过生态环境监测网络的基础数据制定减排目标,同时筛选经济效益和环境成本可行的减排技术,保证区域减排草案的经济可行性。
3)构建多阈值约束体系: 积极划定不同污染物的水、土、大气阈值,进而制定全面的污染物防控制度,将污染物浓度控制在影响人体健康和生态系统稳定性的水平以下。同时,还要防止污染物由于人为治理向更具危害性的形态转化,以及向其他经济落后、生态脆弱的区域转移。