穆婉露, 李肖微, 王龙飞, 陈 永, 邓 凯, 吴彦超
[哈尔滨工业大学(威海) 海洋科学与技术学院,山东 威海 264209]
三氟甲磺酸铁催化新型1,3,5-三苯基苯类化合物的合成
穆婉露, 李肖微, 王龙飞, 陈 永, 邓 凯, 吴彦超*
[哈尔滨工业大学(威海) 海洋科学与技术学院,山东 威海 264209]
以苯乙酮类化合物为原料,三氟甲磺酸铁[Fe(OTf)3]为催化剂,经自身三聚缩合反应合成了18个1,3,5-三苯基苯类化合物(2a~2r),其中2o~2r为新化合物,其结构经1H NMR,13C NMR和HR-MS(ESI)表征。研究了催化剂种类及其用量、溶剂、温度和反应时间对2a产率的影响。结果表明:在最佳反应条件 [Fe(OTf)30.02 eq.,甲苯为溶剂,于100 ℃反应4 h]下,2a产率91%。
三聚缩合反应; 三氟甲磺酸铁; 1,3,5-三苯基苯; 合成; 条件优化
1,3,5-三芳基苯类化合物[1-6]是一类结构特殊,呈C3对称的芳香族化合物。该类化合物因具有类似树枝状聚合物的空间结构特点而有许多独特的性质[7-8]。近年来,1,3,5-三芳基苯类化合物在生物医学,催化剂[9],光功能材料[10],有机电导材料[11-14]等领域也取得了诸多成果。1,3,5-三芳基苯可以从煤中提取,但结构单一的三苯基苯无法满足实际需求。因此探究合成含不同官能团的1,3,5-三苯基苯类化合物的方法成为一个重要的研究课题[15-17]。目前报道的功能化1,3,5-三苯基苯化合物的合成方法[18-25]主要为苯乙酮在布朗斯特酸或路易斯酸催化下的自身缩合反应。但该方法底物适应性较差,如4-位大位阻基团取代和3,4-位双取代苯乙酮作为底物参与反应时,产率偏低。
Scheme1
本文以苯乙酮类化合物(1a~1r)为原料,三氟甲磺酸铁[Fe(OTf)3]为催化剂,甲苯为溶剂,于100 ℃经自身缩合反应合成了一系列1,3,5-三苯基苯类化合物(2a~2r, Scheme 1),其中2o~2r为新化合物,其结构经1H NMR,13C NMR和HR-MS(ESI)表征。研究了催化剂种类及其用量、溶剂、温度和反应时间对2a产率的影响。
XT-4A型显微熔点仪;Bruker Advance III 400 MHz型傅里叶转换核磁共振仪(CDCl3为溶剂,TMS为内标);QSTAR Pulsar I LC/TOF型和MSLC/TOP MS型质谱仪。
苯乙酮类化合物和三氟甲磺酸铁;国药集团化学试剂有限公司;其余所用试剂均为分析纯。
在反应管中加入1a36.1 mg(0.3 mmol),三氟甲磺酸铁3.0 mg(2 mmol%)和甲苯2 mL,搅拌下于100 ℃反应4 h(TLC检测)。加入饱和碳酸氢钠溶液10 mL,用乙酸乙酯(3×10 mL)萃取,合并有机相,用饱和食盐水(10 mL)洗涤,用无水硫酸钠干燥,过滤,浓缩,残余物经硅胶柱层析[洗脱剂:V(石油醚)/V(乙酸乙酯)=30/1]纯化得2a29.2 mg。
用类似的方法合成2b~2r。
2a: 淡黄色固体,产率91%, m.p.172~174 ℃;1H NMRδ: 7.81(s, 3H), 7.72(dd,J=6.8 Hz, 1.2 Hz, 6H), 7.50(t,J=6.4 Hz, 6H), 7.42~7.37(m, 3H);13C NMRδ: 141.6, 140.0, 128.8, 127.6, 127.1, 124.3; HR-MS(ESI)m/z: Calcd for C24H19{[M+H]+}307.148 1, found 307.148 4。
2b: 淡黄色固体,产率84%, m.p.236~238 ℃;1H NMRδ: 7.84~7.54(m, 9H), 7.53~7.51(m, 6H);13C NMRδ: 161.6, 137.0, 132.0, 128.9(d,J=7.8 Hz, 1C), 125.0, 115.7(d,J=21.4 Hz, 1C); HR-MS(ESI)m/z: Calcd for C24H16F3{[M+H]+}361.119 9, found 361.119 7。
2c: 淡黄色固体,产率82%, m.p.244~245 ℃;1H NMRδ: 7.69(s, 3H), 7.60(d,J=8.5 Hz, 6H), 7.45(d,J=8.5 Hz, 6H);13C NMRδ: 141.5, 139.2, 133.9, 129.1, 128.5, 125.0; HR-MS(ESI)m/z: Calcd for C24H16Cl3{[M+H]+}409.031 2, found 409.031 8。
2d: 淡黄色固体,产率83%, m.p.260~261 ℃;1H NMRδ: 7.69(s, 3H), 7.61(d,J=7.9 Hz, 6H), 7.53(d,J=7.9 Hz, 6H);13C NMRδ: 141.5, 139.6, 132.0, 128.9, 125.0, 122.1; HR-MS(ESI)m/z: Calcd for C24H16Br3{[M+H]+}540.879 7, found 540.879 4。
2e: 淡黄色固体,产率80%, m.p.255~257 ℃;1H NMRδ: 7.83(s, 3H), 7.81(d,J=8.4 Hz, 6H), 7.77(d,J=8.4 Hz, 6H);13C NMRδ: 144.0, 141.5, 130.1(q,J=2.3 Hz, 1C), 127.7, 126.1, 126.0 (q,J=3.7 Hz, 1C), 124.2(q,J=270.3 Hz, 1C); HR-MS(ESI)m/z: Calcd for C27H16F9{[M+H]+}511.110 3, found 511.110 6。
2f: 淡黄色固体,产率88%, m.p.175~177 ℃;1H NMRδ: 7.69(s, 3H), 7.60(d,J=8.0 Hz, 6H), 7.45(d,J=8.0 Hz, 6H), 2.35(s, 9H);13C NMRδ: 142.2, 138.4, 137.3, 129.5, 127.2, 124.5, 21.1; HR-MS(ESI)m/z: Calcd for C27H25{[M+H]+}349.195 1, found 349.195 4。
2g: 淡黄色固体,产率80%, m.p.75~76 ℃;1H NMRδ: 7.84(s, 3H), 7.69(d,J=7.4 Hz, 6H),7.32(d,J=7.4 Hz, 6H), 2.61(d,J=7.0 Hz, 6H), 2.05~1.95(m, 3H), 1.03(d,J=6.5 Hz,18H);13C NMRδ: 142.1, 141.0, 138.7, 129.5, 127.0, 124.6, 45.1, 30.2,22.4; HR-MS(ESI)m/z: Calcd for C36H43{[M+H]+}475.335 9, found 475.335 5。
2h: 淡黄色油状液体,产率79%;1H NMRδ: 7.79(s, 3H), 7.65(d,J=7.4 Hz, 6H), 7.32(d,J=7.4 Hz, 6H), 2.71(t,J=7.0 Hz, 6H), 1.72~0.96(m, 27H);13C NMRδ: 142.3, 142.1,138.6, 128.8, 127.1, 124.6, 35.6, 31.6, 31.2, 22.6, 14.0; HR-MS(ESI)m/z: Calcd for C39H49{[M+H]+}517.382 9, found 517.382 8。
2i: 淡黄色固体,产率87%, m.p.139~141 ℃;1H NMRδ: 7.67(s, 3H), 7.64(d,J=8.5 Hz, 6H), 7.02(d,J=8.5 Hz, 6H), 3.88(s, 9H);13C NMRδ: 159.3, 141.8, 133.8, 128.3, 123.8, 114.2, 55.4; HR-MS(ESI)m/z: Calcd for C27H25O3{[M+H]+}397.179 8, found 397.179 5。
2j: 淡黄色固体,产率80%, m.p.171~173 ℃;1H NMRδ: 7.72(s, 3H), 7.66(s, 3H), 7.56(d,J=7.2 Hz, 3H), 7.44~7.37(m, 6H);13C NMRδ: 142.5, 142.4, 141.2, 134.8, 130.1, 127.8, 127.4, 125.4; HR-MS(ESI)m/z: Calcd for C24H16Cl3{[M+H]+}409.031 2, found 409.031 1。
2k: 淡黄色固体,产率79%, m.p.116~118 ℃;1H NMRδ: 7.81(s, 3H), 7.57~7.40(m, 9H), 7.25(d,J=7.4 Hz, 3H), 2.50(s, 9H);13C NMRδ: 142.4, 141.2, 138.4, 128.7, 128.2, 128.1, 125.1, 124.5, 21.7; HR-MS(ESI)m/z: Calcd for C27H25{[M+H]+}349.195 1, found 349.195 5。
2l: 淡黄色固体,产率78%, m.p.119~120 ℃;1H NMRδ: 7.80(s, 3H), 7.59~7.44(m, 9H), 7.28(d,J=7.6 Hz, 3H), 2.61(m, 6H), 2.50(s, 9H);13C NMRδ: 142.4, 141.2, 138.4, 128.7, 128.2, 128.1, 125.1, 124.5, 21.7,14.8; HR-MS(ESI)m/z: Calcd for C30H31{[M+H]+}391.242 0, found 391.242 7。
2m: 淡黄色固体,产率80%, m.p.134~135 ℃;1H NMRδ: 7.44~7.33(m, 15H), 2.47(s, 9H);13C NMRδ: 141.7, 141.4, 135.4, 130.4, 129.9, 128.5, 127.3, 125.8, 14.5; HR-MS(ESI)m/z: Calcd for C27H25{[M+H]+}349.195 1, found 349.195 6。
2n: 淡黄色固体,产率81%, m.p.80~82 ℃;1H NMRδ: 7.36~7.28(m, 6H), 7.52~7.45(m, 6H), 7.5(s, 3H);13C NMRδ: 126.9, 128.7, 129.8, 130.1, 131.6, 132.6, 138.9, 139.9; HR-MS(ESI)m/z: Calcd for C24H16Cl3{[M+H]+}409.031 2, found 409.031 3。
2o: 黄色固体,产率82%, m.p.90~92 ℃;1H NMRδ: 7.76(s, 3H), 7.51(s, 3H), 7.48(d,J=7.3 Hz, 3H), 7.28(d,J=7.3 Hz, 3H), 2.61~2.58(m, 6H), 2.39(s, 9H), 2.36(s, 9H);13C NMRδ: 142.2, 139.0, 136.9, 135.8, 130.1, 128.6, 124.7, 124.5,22.6, 14.8; HR-MS(ESI)m/z: Calcd for C33H37{[M+H]+}433.289 0, found 433.289 4。
2p: 淡黄色固体,产率80%, m.p.100~101 ℃;1H NMRδ: 7.75(s, 3H), 7.54(s, 3H), 7.48(d,J=7.3 Hz, 3H), 7.26(d,J=7.3 Hz, 3H), 2.60(m, 12H), 2.39(s, 9H), 2.36(s, 9H);13C NMRδ: 142.2,139.0, 136.9, 135.8, 130.1, 128.6, 124.7, 124.5, 24.7, 22.6, 14.8; HR-MS(ESI)m/z: Calcd for C36H43{[M+H]+}475.335 9, found 475.335 4。
2q: 黄色固体, 产率79%, m.p.150~152 ℃;1H NMRδ: 7.74(s, 3H), 7.51(s, 3H), 7.49(d,J=7.3 Hz, 3H), 7.29(d,J=7.3 Hz, 3H), 2.62~2.61(m, 6H), 2.36(s, 9H);13C NMRδ: 142.2, 139.0, 136.9, 135.8, 130.1, 128.6, 124.7, 128.9(d,J=7.8 Hz, 1C), 124.5, 115.7(d,J=21.4 Hz, 1C), 21.7, 14.8; HR-MS(ESI)m/z: Calcd for C30H28F3{[M+H]+}445.213 8, found 445.213 3。
2r: 淡黄色固体,产率77%, m.p.140~141 ℃;1H NMRδ: 7.78(s, 3H), 7.52(s, 3H), 7.43(d,J=7.3 Hz, 3H), 7.25(d,J=7.3 Hz, 3H), 2.65~2.60(m, 6H), 1.72~0.96(m, 15H);13C NMRδ: 142.2,139.0, 136.9, 135.8, 130.1, 128.6, 124.7, 124.5, 22.6, 19.4, 14.8; HR-MS(ESI)m/z: Calcd for C33H34Br3{[M+H]+}667.020 5, found 667.020 3。
以2a的合成为模板反应,考察了催化剂的种类及其用量,溶剂和反应温度对其产率的影响,结果见表1。
表1 反应条件对2a产率的影响
由表1可见,No.1~No.7为催化剂对产率的影响,以三氟甲磺酸铁为催化剂,产率最高(No.2, 73%)。No.2, No.8和No.9为催化剂用量对产率的影响,随着催化剂用量增加,产率有所提高,催化剂用量为0.02 eq.时,产率最高(No.8, 82%),继续增加催化剂用量,对反应影响不大。No.8, No.10~No.13为溶剂对产率的影响,甲苯为溶剂,产率最高(No.8, 82%)。 No.8, No.14~No.17为反应温度对产率的影响。温度升高,反应时间缩短,产率略有提高,反应温度为100 ℃时,产率最高(No.15, 91%)。继续升高温度,产率反而降低。
在最优条件下,考察了底物的适应性(Scheme 1)。结果表明:底物的苯环上无论是含有供电子基团还是吸电子基团,均能在三氟甲磺酸铁的催化下发生自身缩合反应,合成三苯基苯类化合物,产率较高。4-位为体积较大的链状烷烃取代基和3,4-位双取代苯乙酮,产率也较高。因此,该反应体系具有良好的底物适应性。
报道了三氟甲磺酸铁催化苯乙酮类化合物自身三聚缩合反应,合成一系列 1,3,5-三苯基苯类化合物(2a~2r)。研究了催化剂种类及其用量、溶剂、温度以及反应时间对2a产率的影响。结果表明:在最佳反应条件[Fe(OTf)30.02 eq.,甲苯为溶剂,于100 ℃反应4 h]下,2a产率最高(91%)。该反应具有操作简单,产率高,底物适应性广等优点。
[1] BOROUJENI M B, HASHEMZADEH A, FAROUGHI M T,etal. Magnetic MIL-101-SO3H:A highly efficient bifunctional nanocatalyst for the synthesis of 1,3,5-triarylbenzenes and 2,4,6-triaryl pyridines[J].RSC Advances,2016,6(102):100195-100202.
[2] DENG K, HUAI Q Y, SHEN Z L,etal. Rearrangement of dypnones to 1,3,5-triarylbenzenes[J].Organic Letters,2015,17(6):1473-1476.
[3] WANG F, SHEN J, CHENG G,etal. Practical access to 1,3,5-triarylbenzenes from Chalcones and DMSO[J].Rsc Advances,2015,5(89):73180-73183.
[4] TAYEBEE R, JARRAHI M, MALEKI B,etal. A new method for the preparation of 1,3,5-triarylbenzenes catalyzed by nanoclinoptilolite/HDTMA[J].RSC Advances,2015,5(15):10869-10877.
[5] PRASAD D, PREETAM A, NATH M. DBSA catalyzed cyclotrimerization of acetophenones:An efficient synthesis of 1,3,5-triarylbenzenes under solvent-free conditions[J].Comptes Rendus Chimie,2013,16(3):252-256.
[6] GHANBARIPOUR R, MOHAMMADPOOR-BALTORK I, MOGHADAM M,etal. Nano-silica sulfuric acid catalyzed the efficient synthesis of 1,3,5-triarylbenzenes under microwave irradiation[J].Journal of the Iranian Chemical Society,2012,9(5):791-798.
[7] 陈秋燕,麻玉雯,王成云,等. 1,3,5-三[(4′-乙炔基苯基)乙炔基]苯的合成[J].有机化学,2012,31(8):1526-1532.
[8] MORCHUTT C, BJORK J, KROTZKY S,etal. Covalent couplingviadehalogenation on Ni(III) supported boron nitride and graphene[J].Chemical Communications,2014,51(12):2440-2443.
[9] BRUNEL J, LEDOUX I, ZYSS J,etal. Propeller-shaped molecules with giant off-resonance optical nonlinearities[J].Chemical Communications,2001,10(10):923-924.
[10] IKADAI J, YOSHIDA H, OHSHITA J,etal. Facile synthesis of polycyclic aromatic hydrocarbonsviaa trisaryne equivalent[J].Chemistry letters,2004,34(1):56-57.
[11] MARXER S M, ROTHROCK A R, NABLO B J,etal. Preparation of nitric oxide(NO)-releasing sol-gels for biomaterial applications[J].Chemistry of Materials,2003,15(22):4193-4199.
[12] ZHU H, Li X. Discussion on the index method of regional land use change[J].Acta Geographica Sinica,2003,58(5):643-650.
[13] 贺庆国,黄红敏,蔺洪振,等. 具有空穴传输基团的超支化聚合物发光材料的结构与光谱性质[J]. 发光学报,2003,24(5):469-472.
[14] 程格,谢明贵,王跃川. 非线型聚苯类大分子的研究进展[J].化学进展,1998,10(1): 33-44.
[15] IDZIK K R, BECKERT R, GOLBA S,etal. Synthesis by stille cross-coupling procedure and electrochemical properties of C3-symmetric oligoarylobenzenes[J].Tetrahedron Letters,2010,51(18):2396-2399.
[16] 曾平莉. 1,3,5-三芳基苯的合成及研究进展[J].化工技术与开发,2013,(7):30-32.
[17] 成克军,吴世晖. 三氯化稀土催化下二乙氧基缩苯乙酮与乙酰氯的反应——合成1,3,5-三芳基苯的新方法[J].化学学报,1999,57(10):1162-1166.
[18] ZHANG S L, XUE Z F, GAO Y R,etal. Triple condensation of aryl methyl ketones catalyzed by amine and trifluoroacetic acid:Straightforward access to 1,3,5-triarylbenzenes under mild conditions[J].Tetrahedron Letters,2012,53(19):2436-2439.
[19] GHANBARIPOUR R, MOHAMMADPOUR-BALTORK I, MOGHADAM M,etal. Microwave-promoted efficient conversion of acetophenones to 1,3,5-triarylbenzenes catalyzed by H3PW12O40and nano-silica supported H3PW12O40as reusable catalysts[J].Polyhedron,2012,31(1):721-728.
[20] PHATANGARE K, PADALKAR V, MHATRE D,etal. Highly efficient and novel method for synthesis of 1,3,5-triarylbenzenes from acetophenones[J].Synthetic Communications,2008,41(22):4117-4121.
[21] ONO F, ISHIKURA Y, TADA Y,etal. Efficient conversion of acetophenones into 1,3,5-triarylbenzenes catalyzed by bismuth(III) trifluoromethanesulfonate tetrahydrate[J].Synlett,2008,2008(15):2365-2367.
[22] HU H, ZHANG A, DING L,etal. Simple and convenient synthesis of 1,3,5-triarylbenzenes from ketones[J].Journal of Chemical Research,2007,39(2007):720-721.
[23] HU Z G, LIU J, LI G A,etal. Synthesis of symmetric 1,3,5-triarylbenzenes[J].Journal of Chemical Research,2003,2003(12):778-779.
[24] ALLDREDGE A L, SILVER M W. Characteristics,dynamics and significance of marine snow[J].Progress in Oceanography,1988,20(20):41-82.
[25] 胡志国,刘军,李薇,等. 功能性1,3,5-三芳基苯的合成[J].化学试剂,2004,26(6):351-352.
Iron(III)Trifluomethanesulfonate-catalyzedSynthesisof1,3,5-Triarylbenzenes
MU Wan-lu, LI Xiao-wei, WANG Long-fei,CHEN Yong, DENG Kai, WU Yan-chao*
[School of Marine Science and Technology, Harbin Institute of Technology(Weihai), Weihai 264209, China]
Eighteen 1,3,5-triarylbenzenes (2a~2r,2o~2rwere novel compounds) were synthesized by cyclotrimerization of acetophenone derivatives, using Fe(OTf)3as the catalyst. The structures were characterized by1H NMR,13C NMR and HR-MS(ESI). The effects of catalysts and its amount, solvent, reaction temperature and reaction time on the yield of2awere investigated. The results showed that2aachieved the highest yield(91%) under the optimum reaction conditions[Fe(OTf)30.02 eq., toluene as solvent, reaction at 100 ℃ for 4 h].
cyclotrimerization; Fe(OTf)3; 1,3,5-triphenylbenzene; synthesis; optimization
2017-05-16;
2017-10-18
国家自然科学基金资助项目(21272046)
穆婉露(1992-),女,汉族,安徽淮北人,硕士,主要从事有机合成的研究。 E-mail: hitmuwanlu@126.com
吴彦超,教授,博士生导师, E-mail: ycwu@iccas.ac.cn
O625
A
10.15952/j.cnki.cjsc.1005-1511.2017.12.17112