谭延坤, 丁尔民, 刘冬青,, 尹翠玉
(1.义乌华鼎锦纶股份有限公司, 浙江 金华 322000;2. 天津工业大学 分离膜及膜过程国家重点实验室,天津 300387)
聚酰胺6的静电纺丝研究进展
谭延坤1, 丁尔民1, 刘冬青1,2, 尹翠玉2
(1.义乌华鼎锦纶股份有限公司, 浙江 金华 322000;2. 天津工业大学 分离膜及膜过程国家重点实验室,天津 300387)
结合近几年聚酰胺6(polyamide 6, PA6)静电纺丝的研究进展,介绍了PA6纺丝工艺参数的特点、PA6高聚物与其他物质混合体系的静电纺丝及PA6静电纺丝产品的应用,对静电纺丝PA6产品附加值的提升进行了展望.
聚酰胺6;静电纺丝;纳米纤维
聚酰胺6(polyamide6,PA6)的弹性回复率高、耐腐蚀性好、化学性质稳定并且耐磨性好,是工程塑料和化学纤维的主要原料,广泛用于服装、电子电器、汽车等领域[1],但其制品的尺寸稳定性差、耐强酸强碱性差、冲击强度低,故应用受限[2].因此,PA6的物理和化学改性研究是改善其性能的突破点[3-6].随着纳米技术的发展,纳米材料的开发日益受到重视,由于静电纺丝可以高效地制备纳米纤维且操作简单,所以通过静电纺丝开发PA6纳米纤维和复合材料已成为研究热点[7-8].
静电纺丝是通过对高聚物溶液或熔体施加静电力,以克服表面张力形成带电射流从而产生超细纤维的纺丝方法.与其他技术相比,静电纺丝可直接制备纳米纤维无纺布,不用进一步纺织加工;可在常温下纺丝,故一些热稳定性差的聚合物可采用此法进行纺丝;无机、有机、天然、合成高聚物材料均可静电纺丝[9];少量原料即可纺丝,操作方便.静电纺丝法可高效地制备比表面积大、孔隙率高的纤维材料,以满足吸附、离子交换等需求,应用前景广阔[10-14].
静电纺丝的工艺主要考虑溶液参数和操作参数.溶液参数包括溶液浓度、黏度、表面张力和电导率等;操作参数包括电压、接收距离及环境参数如温度、湿度等,通过调控这些参数可实现控制产品品质的目的[15-16].
PA6在甲酸等极性质子溶剂中可溶解纺丝.Lee等[17]发现聚合物溶液的浓度对产品尺寸的影响很大.当PA6甲酸溶液的质量分数为15%时,静电纺纤维的平均直径为80 nm,伴随珠状颗粒产生.当溶液的质量分数增至24%时,纤维直径增至200 nm,无珠状颗粒产生且接收距离变短,纤维尺寸均匀,单位面积内纤维毡质量增大,见图1.该无纺布在风速为5 cm/s时,过滤0.3 μm颗粒的效率为99.993%,优于HEPA(High Efficiency Particulate Air,高效空气颗粒净化)商品化过滤材料.
Sohrabi等[18]发现电压和接收距离等参数存在最优结合,最优条件下可获得具有最佳性能的PA6纳米纤维.在溶液的质量分数为15%、推进速度为0.3 mL/h、电压为7.5~25 kV、接收距离为7.5~25.0 cm时,制备最细平均直径及最窄直径分布纤维的电场强度为1 kV/cm.保持1 kV/cm的电场强度,当电压/距离为7.5 kV/7.5 cm时,纤维的平均直径最小,但直径分布宽;当电压/距离为15 kV/15 cm时,直径分布窄,但平均直径略大.
图1 PA6纤维直径随浓度的变化Fig.1 SEM of PA6 nanofibers as a function of concentration
Mit-Uppatham[19]发现在25~60 ℃时,随温度升高,聚合物溶液的黏度降低,故导致纤维的直径变小.湿度低时溶剂挥发快,但挥发速度过快会导致纺丝过程中喷丝头易堵,不能连续成纤.高湿度有利于纤维放电,但湿度过高时溶剂不能充分挥发,成纤难度提升.
虽然PV6静电纺丝工艺简单,但也要对工艺参数和条件进行细致探索,以获得满足不同需要的产品.
共混体系的溶液参数与单一高聚物不同,产品性质亦不同,这为开发新产品,优化和丰富单一高聚物的功能提供了简便的方法.例如,加入电解质可影响纺丝液的黏度、电导率和表面张力,从而影响纤维的形貌及其纳米结构,通常会增加PA6纤维的直径.
Kim等[20]向PA6溶液中添加NaCl,KBr,CaCl2和H2PtCl6以制备静电纺纳米纤维毡.盐离子间的静电作用导致未干的液滴间相互吸引并拉伸接触,形成多层网状纤维结构,见图2.该结构的形成主要取决于盐的离子化能力,最适宜的盐溶液质量分数为1.5%.当盐的添加量超过2.5%时,溶液不可纺.网状结构改善了PA6纤维毡的机械性能和润湿性.
图2 多层网状纤维Fig.2 The spider-net in the electrospun nylon 6 nanofiber
Pant等[21]报道了一步制备银纳米粒子(Ag NPs)修饰的PA6纳米纤维的方法.该方法将甲酸与甲氧基聚乙二醇混合,在室内环境下进行,不需要后处理.溶剂兼具还原剂的作用,将纺丝液中AgNO3转化为Ag NPs.杂化纳米纤维呈光滑的纤维结构,Ag NPs均匀地分散在整个PA6基质中,见图3.纤维直径和Ag NPs的尺寸受纺丝液静置时间的控制,静置时间越长,纤维直径越小,Ag NPs粒径越大;静置时间越短,纤维直径越大,Ag NPs粒径越小.这是由于静置时间越长,聚合物可能降解,而AgNO3还原更完全.Ag/PA6复合纤维毡的抗菌活性强,水萃取纤维毡不会引起Ag NPs失活,可应用于伤口敷料、生物膜、过滤等领域.
图3 PA6的SEM图片及SEM金属映射图像Fig.3 SEM images of PA6 samples and their SEM metal mapping images
Lim等[22]制备了羟基磷灰石(hydroxyapatite,HAp) /PA6复合纳米纤维,将HAp-PA6共混溶液静电纺丝,HAp增加了纺丝液中的离子含量,使射流裂分成更细的纤维,当w(HAp)=3%时,HAp/PA6纤维的平均直径最小.HAp增加了纺丝液中的离子含量,在纺丝过程中可以使射流裂分成更细的纤维且HAp离子以网状结构的形式固化,见图4.HAp的存在不影响纤维毡支架的孔隙度,复合纤维毡支架具有更好的生物相容性,能够在表面形成更多的磷灰石层,可以作为骨组织工程的支架材料.
图4 不同HAp含量的PA6纤维SEM图Fig.4 SEM images of different HAp contents on PA6 nanofiber mats
Kim等[23]通过单喷丝头,将甲壳素丁酸盐(CB)与PA6的混合液静电纺丝,制得CB包覆PA6的核-壳结构纳米纤维.PA6和CB的相分离随着CB的增加而显著,纤维直径随CB的增加而增大,可见清晰的壳-鞘状结构的纤维,见图5.CB的掺入影响PA6的亲水性、成骨能力和生物相容性,使PA6在硬组织工程中有应用潜力.
图5 混合前后的静电纺纳米纤维的TEM图像Fig.5 TEM images of electrospun nanofibers
静电纺PA6纳米纤维的比表面积大,可用于水处理膜.Scampicchio等[24]用纤维直径为95 nm的PA6静电纺丝纤维膜过滤苹果汁.该膜的机械性能好、密度低、孔隙率高,去除酚类化合物的性能优越且能在苹果汁的正常pH值(3.5)下选择性吸附多酚类物质,如单宁酸.该膜集筛分、微孔过滤器与亲和膜的功能于一体,在去除浊度、颜色和苦味的酚类化合物中显示了优越性能,保持了果汁的抗氧化能力,为生产澄清果汁及其他饮料过滤器提供了新思路.
Li等[25]对静电纺PA6纤维膜热液处理,得到聚酰胺6附着Mg(OH)2(PA6/Mg(OH)2)复合纳米纤维膜.当六价铬离子(Cr(VI))的质量分数为110 mg/g时,膜的吸附容量高达296.4 mg/g,循环使用性能优异,可去除环境中的铬(VI),见图6.
Abdal-hay等[26]将垂直有序的碳酸羟磷灰石(HA)纳米片沉积在PA6纳米纤维上,无明显凝聚成核.简单水热处理后的PA6纳米纤维表面可通过沉积获得成骨矿物质HA的纳米片晶体,见图7.经体外培养,MC3T3-E1骨细胞可附着在纳米纤维上且向内生长分化为成骨细胞,这说明纤维毡具有优异的生物活性,具有比普通纳米纤维更高的成骨能力.
图6 PA6/Mg(OH)2复合纳米纤维去除Cr (VI)的原理示意图Fig.6 Mechanism for Cr (VI) removal by PA6/Mg(OH)2 composite nanofibrous membrane
图7 PA6纳米纤维的电镜图片Fig.7 Electrospectrum images of PA6 nanofiber
PA6是一种性能优良、廉价易得的重要合成高聚物,经适宜条件的静电纺丝,可以获得满足各种需求的纳米纤维材料.这些材料因为具有高比表面积、高孔隙率及高生物活性等,有应用于高效过滤材料、离子交换纤维、高效吸附材料及成为生物医学工程中高强度支撑材料的潜力,值得深入探索,本课题为该材料的新应用与附加值的提高探索了新的方向.
[1]ZHU N,GONG H,HAN W.Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N,N′,N ″-trimesoyltricaprolactam as a multifunctional activator[J].Chinese Chemical Letters,2015,26(11):1389-1392.
[2]HE M,ZONG S Q,ZHOU Y H.Non-isothermal crystallization kinetics of reactive microgel/nylon 6 blends[J].Chinese Journal of Chemical Engineering,2015,23(8):1403-1407.
[3]LIU Y L,LIU S,YIN C Y.Synthesis and structure-property of polyamide 6/macrogol/attapulgite nanocomposites[J].Polymer Composites,2014,35(9):1852-1857.
[4]KIM J G,LEE J,SON Y.Toughening of nylon 6 with a ethylene-octene copolymer grafted with maleic anhydride and styrene[J].Materials Letters,2014(126):43-47.
[5]LEISTNER M,HAILE M,ROHMER S.Water-soluble polyelectrolyte complex nanocoating for flame retardant nylon-cotton fabric[J].Polymer Degradation and Stability,2015(122):1-7.
[6]宋超,文梦君,余毅.聚酰胺纤维生产现状及发展展望[J].合成纤维工业,2012,35(1):49-53.
[7]GENDRE L,NJUGUNA J,ABHYANKAR H.Mechanical and impact performance of three-phase polyamide 6 nanocomposites[J].Materials & Design (Part B),2015(66):486-491.
[8]BANERJEE S S,BHOWMICK A K.Novel nanostructured polyamide 6/fluoroelastomer thermoplastic elastomeric blends:influence of interaction and morphology on physical properties [J].Polymer,2013,54(24):6561-6571.
[9]TSOU S Y,LIN H S,WANG C.Studies on the electrospun Nylon 6 nanofibers from polyelectrolyte solutions:effects of solution concentration and temperature[J].Polymer,2011(52):3127-3136.
[10]GENDRE L,NJUGUNA J,ABHYANKAR H.Mechanical and impact performance of three-phase polyamide 6 nanocomposites[J].Materials & Design (Part B),2015(66):486-491.
[11]BANGRJEE S S,BHOWMICK A K.Novel nanostructured polyamide 6/fluoroelastomer thermoplastic elastomeric blends:influence of interaction and morphology on physical properties [J].Polymer,2013,54(24):6561-6571.
[12]GAZZANO M,GUALANDI C,ZUCCHELLI A.Structure-morphology correlation in electrospun fibers of semicrystalline polymers by simultaneous synchrotron SAXS-WAXD[J].Polymer,2015(63):154-163.
[13]JING X,MI H Y,CORDIE T M.Fabrication of shish-kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils:effect of solvents and matrigel functionalization[J].Polymer,2014(55):5396-5406.
[14]JIANG G J,ZHANG S,QIN X H.High throughput of quality nanofibers via one stepped pyramid shaped spinneret[J].Materials Letters,2013(106):56-58.
[15]STANKUS J J,GUAN J,FUJIMOTO K.Microintegrating smooth muscle cells into a biodegradable,elastomeric fiber matrix[J].Biomaterials,2006(27):735-744.
[16]CHONG E J,PHAN T T,LIM I J.Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution[J].Acta Mater,2007(3):321-330.
[17]AHN Y C,PARK S K,KIM G T.Development of high efficiency nanofilters made of nanofibers[J].Current Applied Physics,2006,6(5):1030-1035.
[18]SOHRABI A,SHAIBANI P M,THUNDAT T.The effect of applied electric field on the diameter and size distribution of electrospun Nylon 6 nanofibers[J].Scanning,2013,35(3):183-188.
[19]MIT-UPPATHAM C,NITHITANAKUL M,SUPAPHOL P.Ultrafine electrospun polyamide-6 fibers:effect of solution conditions on morphology and average fiber diameter[J].Macromolecular Chemistry and Physics,2004,205(17):2327-2338.
[20]NASSER B A M,MUZAFAR A K,FAHEEM A S.Spider-net within the N6,PVA and PU electrospun nanofiber mats using salt addition:novel strategy in the electrospinning process[J].Polymer,2009(50):4389-4396.
[21]PANT B,PANT H R,PANDEYA D R.Characterization and antibacterial properties of Ag NPs loaded nylon-6 nanocomposite prepared by one-step electrospinning process[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012(395):94-99.
[22]ABDAL-HAY A,PANT H R,LIM J K.Super-hydrophilic electrospun nylon-6/hydroxyapatite membrane for bone tissue engineering[J].European Polymer Journal,2013(49):1314-1321.
[23]PANT H R,KIM H,BHATT L R.Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications[J].Applied Surface Science,2013(285):538-544.
[24]FUENMAYOR C A,LEMMA S M,MANNINO S.Filtration of apple juice by nylon nanofibrous membranes[J].Journal of Food Engineering,2014(122):110-116.
[25]JIA B B,WANG J N,WU J.“Flower-Like” PA6@Mg(OH)2electrospun nanofibers with Cr (VI)-removal capacity[J].Chemical Engineering Journal,2014(254):98-105.
[26]ABDAL-HAY A,HAMDY A S,MORSI Y,et al.Novel bone regeneration matrix for next-generation biomaterial using a vertical array of carbonated hydroxyapatite nanoplates coated onto electrospun nylon 6 nanofibers[J].Materials Letters, 2014(137):378-381.
The progress of electrospinning of polyamide 6
TAN Yankun1, DING Ermin1, LIU Dongqing1,2, YIN Cuiyu2
(1.Yiwu Huading Nylon Co., Ltd., Jinhua 322000, China; 2.State Key Laboratory of SeparationMembranesandMembraneProcesses,TianjinPolytechnicUniversity,Tianjin300387,China)
In this paper, the progress of electrospinnning of polyamide 6 were reviewed. Three main aspects were introduced including operation parameters and spinning solution property, electrospinning of PA6 mixtures and applications of electrospinning products. The prospect of PA6 products of electrospinning was forecasted.
polyamide 6; electrospinning; nanofiber
2016-01-16
国家自然科学基金(51373119)
谭延坤(1972-),男,山东淄博人,工程师,主要从事锦纶纤维的开发研究.
刘冬青(1974-),女,副教授,博士,硕士生导师,主要从事高分子材料的开发研究.E-mail:ldqnov@163.com.
TS102.5
A
1674-330X(2016)03-0001-05