大数据技术在商业银行对公营销中的应用

2016-04-29 00:00:00王少剑林舒
海南金融 2016年3期

摘 要:随着网络社会的全面到来,大数据技术应运而生,数据成为一种生产要素,对商业银行经营管理产生重大影响。国内商业银行纷纷展开大数据实践,主要集中在风险控制和零售业务,在对公业务营销领域的应用还不多。对公业务作为银行最重要的一个盈利点,在新的数据竞争环境中也存在借助大数据技术转变营销模式的需求。因此,大数据技术在对公业务营销管理中有着巨大的应用潜力。本文总结商业银行对公业务营销中大数据技术的应用现状和趋势,并基于“PDMA”梳理大数据技术在商业银行的应用框架,为商业银行对公业务的大数据营销提供一种思路。

关键词:大数据技术;对公业务营销

中图分类号:F274 文献标识码:A 文章编号:1003-9031(2016)03-0070-04 DOI:10.3969/j.issn.1003-9031.2016.03.15

当今时代,以移动互联网、云计算技术、搜索引擎为代表的新一代信息技术全面渗入金融行业,对金融业态产生重要影响。同时,伴随网络技术的发展,数据渗透到了每一个行业,“大数据”应运而生,已成为重要的生产要素。对最早实现数字化交易的银行业来说,大数据能反映银行产品管理的综合信息,也隐藏着产品相关的客户行为模式,有助于实现基于客户行为的产品营销管理。

一、大数据技术概况

大数据尚未有统一的概念,目前采用较多的是麦肯锡咨询公司的定义,大数据是“规模大到传统的数据库软件工具已经无法采集、存储、管理和分析的数据集”,且大数据具有“4V”的特点,即数据量大(Volume)、数据种类繁多(Variety)、数据更新快(Velocity)、数据具有极大的价值(Value)[1]。IDC的报告预测未来5年中国的数据量将以51.4%的速度增长[2]。数据作为一种信息,记录了企业所有的产品信息,并能更精确、更客观地展现客户需求,具有重大的商业价值[3]。基于大数据技术的各种商业创新,会使得未来的营销活动以更贴近消费者需求方式以及在更为合理的时间实施,取得更好的效果[4]。

现有的大数据分析挖掘的方法有很多,常用的有如下几种。

1.关联分析法。这是最常见的大数据分析方法之一,指的是从现有的数据库中找出特定序列的数据在特定事件中存在的数据关联性。确定关联规则是关联分析法的重要基础,不同关联规则的设定会产生不同的关联结果。该方法主要用于发现某一事件中不同数据是否存在关联性,如产品间的内在关联性。

2.序列分析法。序列分析法与关联分析法规则类似,但寻找的是某一事件中数据之间在时间上的关联性。加入了时间序列,使得分析结果更具动态性和延续性。这种分析法对于发现潜在用户具有明显作用,能够广泛应用到金融、医疗、工程等领域的企业中。

3.分类和预测分析法。实际上是两个过程,第一步是确定模型描述,针对指定的数据类型和概念集进行分类划分,第二步是使用这种分类基于模型进行预测分析。这一类分析方法主要用于挖掘隐藏在数据背后的消费者特定的消费习惯,并预测其后续的可能行为。

4.聚类分析法。聚类分析法能够将数据库内数据特征未知的信息进行相似性最大化处理,帮助企业了解哪些是较为典型性的用户,哪些是忠实用户,哪些是流失用户等,从而有助于企业根据不同用户的消费特征制定不同的营销策略。

二、大数据技术在商业银行的应用现状

国内的金融行业,尤其是银行业,大数据的应用尚处于起步阶段,远远落后于互联网行业。但金融行业实现数字化交易以来,沉淀了大量的用户数据,是较为适合大数据分析的行业。银行业的数据分析尚处于从数据碎片化到数据整合时代的过渡阶段。现阶段,大数据技术在商业银行的应用主要集中在风险控制和零售业务,主要有三种模式。

首先,基于网上交易流水的数据挖掘。银行与电商合作,直接接触电商平台、支付平台上的大量卖家和买家,并通过交易流、信息流、资金流覆盖其产业链上的生产、物流、消费等多个环节。基于此,银行借助成熟的数据分析技术,实施风险控制和拓展营销。如工商银行“易融通”会自动处理客户信息,选取客户融资需求量、还款资金来源及其可靠性等因素作为贷款额度指标,在线批量审批与发放贷款。招商银行与敦煌网共同推出的“敦煌网生意一卡通”客户信息共享,为小微企业提供融资、结算、理财一体化的金融服务。

其次,基于第三方系统的征信数据挖掘。这一类数据主要包括人行征信、工商、税务、电力、房管局、车管所、社保、海关等政府数据,学历、购物、支付、物流等社会征信数据以及各大金融机构的金融数据等。这些数据使得银行能更加全面判断企业客户的属性和资质,更有针对性地根据其综合情况实施精准营销。如平安银行在接入平安保险、平安租赁等集团子公司数据的同时,辅之以政府公共数据,全面分析客户情况并据此营销。

最后,基于POS流水的数据应用。商业银行依托在线贷款业务平台系统,对客户进行综合信用评价,向符合贷款条件的POS商户,以其一定期限内的POS结算流入量为授信额度的依据,在线发放用于生产经营的信用贷款。已有的POS流水数据应用有招商银行和通联支付合作的流水贷、中信银行和银联商务合作的网络商户贷款业务,浦发银行和通联支付合作的流水贷业务等。

除了基于行内数据进行挖掘分析外,国内许多商业银行还与专业第三方公司合作,争取顺应大数据潮流,进一步加快应用大数据的步伐。如平安银行与SPSS公司合作,进行消费贷产品的大数据营销管理;宁波银行利用客户购买某项产品大数据分析结果挖掘潜在客户。这些探索为商业银行拥抱大数据技术,利用大数据技术转变营销理念和营销方法提供了很好的借鉴。

随着云计算、物联网等新型信息技术的发展和跨渠道跨终端的整合,银行的大数据将日渐完善。产品的客观数据与客户信息也将有效结合,形成完整的“产品——用户”数据库,用于银行各类产品的规模化和定制化综合推介,尤其是对于具有复杂的金融产品综合运用需求的对公客户来说,大数据的应用将是一片蓝海。

三、大数据技术在对公业务营销中的应用方案

对公客户是商业银行的主要利润来源之一,且该类客户沉淀了大量复杂的数据,将大数据技术应用于对公客户服务和对公产品营销具有重要意义。基于大数据技术的营销管理是一项系统性工程,需循序渐进,最终形成一套成熟体系。张湛梅等提出一套针对移动互联网的大数据营销体系“PDMA”,主要包括认知客户(perceive)、挖掘需求(data-mining)、精准营销(marketing)、营销评估(assessment),构成一个闭环体系[5]。基于“PDMA”的框架能很好地建立银行产品和客户两个维度。结合客户属性进行产品大数据分析,才能以更符合客户偏好和需求的方式实施产品营销,并对营销的效果进行事后评估,以持续改进。本文以“PDMA”为框架,系统阐述商业银行借助大数据技术进行对公产品营销管理的应用方案。

(一)P——认知客户行为

对公客户与零售客户有本质的区别,客户的金融需求复杂,且更加个性化多样化。在银行进行大数据分析之前,应当对对公客户有一个全面认识,并结合客户情况认知银行对公产品现状。认知企业客户行为可以从三个方面着手。

1.基于客户属性建立客户特征库。客户特征库包括银行数据库中的所有对公客户相关字段,可以对客户的自身属性、所在地区、财务状况、与银行合作紧密程度等进行初步分析,掌握客户基本情况。

2.结合客户持有产品情况,认知银行的产品结构。以产品管理系统中的产品库为依据,分析持有不同数量产品的客户分布、各门类产品的客户总体分布、下属分行及其经营机构的客户持有产品情况,以及结合多个时点的各门类产品客户数的变化趋势等。

3.在认知产品的基础上,基于产品记录,分析客户行为习惯。包括客户对产品门类的偏好,对产品购买渠道的偏好,对资金流动性的需求,购买产品时段偏好等。

(二)D——挖掘客户需求

在认知产品和客户的基础上,应用大数据技术,挖掘隐藏在产品信息和客户信息背后的客户需求,为后续的精准营销打下基础。

1.基于客户产品持有行为判断不同产品的相关程度。在客户持有产品的全数据中,同一客户持有多种产品的现象较为普遍。分析客户持有的产品明细清单,找出同一客户持有产品组合的一般规律,可以准确判断各产品之间的相关程度,测算出持有某种产品的客户同时使用该产品相关产品的可能性。产品相关分析的结果可以形成定期的产品相关性监测报告和营销建议。

2.基于产品的监测报告,判断产品持有的平均水平。结合客户产品的平均持有水平分析,将低于产品平均持有水平的对公客户认为是具有产品潜力的客户群,生成这一类客户清单。同时根据客户清单中对公客户所在分行进行分类,将这部分产品需求未充分挖掘的客户清单推送到分行,以帮助分行更好地锁定目标营销客户。同时也可以针对不同门类产品的客户情况进行统计分析,判断持有某类产品的客户使用其它门类产品的情况,也即产品的跟进情况。

3.对非结构化的大数据进行分析,全方位挖掘客户的产品需求。非结构化数据可以分为行内数据和行外数据。行内数据中,银行内部的资金来往记录和银行内部企业授信报告等都可以作为非结构化数据来源。此外,银行还可综合应用外部数据,如电力、税务、工商和人行征信系统数据。通过这类交易数据可以形成企业的社会网络关系图,作为供应链金融大数据营销的重要依据。

总之,需求发现环节应紧密结合产品和客户的数据,挖掘大数据背后客户对产品的需求,是借助大数据实现对公产品营销管理的基础性工作。

(三)M——产品精准营销

充分挖掘客户需求后,根据需求实施精准营销。具体可以有如下应用。

1.结合客户的产品门类偏好推荐同一类别的其它产品。根据客户偏好分析和需求挖掘结果,掌握客户对某类产品的使用记录,为其推荐同门类产品中其它热门产品(依据热门产品排名),提高同一门类产品的渗透率。此外,还可以具体到各分行,分析各分行同类产品使用情况,并将之与全行产品应用情况对比分析。低于全行各门类产品应用水平的分行建议就其薄弱的产品门类进行重点营销。

2.对持有某些产品的客户推荐产品组合中的其它产品。通过产品相关分析梳理出相关度高的产品组合,结合只持有这些产品组合中的部分产品的客户清单,生成各个客户还可进行关联营销的具体产品清单,推送给各分行,指导其根据该客户潜在产品清单对客户进行产品关联推荐。

3.通过客户属性分析开发潜在客户。从产品出发,通过聚类法和分类预测法分析持有某种产品的客户群体的共同属性,然后比对具有这些属性但还未持有该种产品的客户,作为该种产品的潜在客户名单,对名单上的客户推荐该种产品,通过分析现有客户成功开发新客户。

(四)A——营销效果评估

营销评估是贯穿“PDMA”大数据营销体系全流程的最后一环,也是营销管理流程中承上启下的重要步骤,能及时帮助商业银行掌握大数据分析的效果。银行在精准营销评估过程中,应当加入时间序列,结合产品和客户情况进行综合评估,并定期对基于大数据分析的精准营销实施评估,根据评估效果改善大数据分析和精准营销的成果。对有成效的分析结果形成定期营销报告,对于成果不显著的从业务角度总结原因,调整大数据分析模型和参数,改进结果。

四、对公业务营销中的典型案例

总体来说,相比国有银行,股份制银行更加积极拥抱大数据技术。2015年3月,民生银行“金融e管家”平台正式上线,这是民生银行利用大数据技术的一大利器。该平台主要针对国内商业银行客户关系管理系统管理功能、分析功能、应用功能相互脱离的弊端而开发的基于大数据分析的一站式服务平台。“金融e管家”服务于全行对公客户管理,覆盖“PDMA”框架的四个环节,是对公业务应用大数据技术的典范。

首先,认知客户行为(P)。该平台对接民生银行内200多个生产系统和数据中枢,并导入上市公司数据、人行征信数据、工商数据等行外的数据,形成完善的数据结构,通过不同的规则组合数据,如对公客户和产品的交叉组合,或者基于供应链的客户上下游集合等,使用户可从不同角度解读对公客户的特性,同时通过行内资金流和行内外信息流,精确掌握客户的行为习惯。

其次,挖掘客户需求(D)。该平台对客户信息更深层次的挖掘,去除无效信息,将有效信息放大,结合线下业务资源,挑选出最适合营销的企业关系群体,应用多种大数据分析方法,建立关系网络分析模型,识别出群体的特征和相互之间业务重点,并以极具可用性的界面展示客户潜在需求挖掘的结果,帮助客户经理深度挖掘客户的金融需求。

再者,产品精准营销(M)。该平台是一个智能化的融资理财和资源整合平台,主要围绕核心客户,通过后台数据的支撑,建立交易网络模型和上下游客户推荐模型,并据此匹配最适合的金融产品,实现精准营销。该平台上线后,对公产品关联营销的成功率大大提高。

最后,产品营销评估(A)。该平台建立了基于历史记录的客户绩效评价体系,科学全面的评价客户绩效,并根据评价结果改进营销方向。后评价功能涵盖对公业务的不同情况,如对个性化服务方案的综合评价,对集团客户也能建立综合收益的评价,而不仅仅是单独考虑单笔业务的收益,适应了缺资产时代的商业银行经营新思路。

可以预见,在信息技术发展日新月异的当代,随着对公业务背后纷繁复杂的信息流、资金流、物流等多样化数据不断沉淀,大数据技术在商业银行对公业务营销中的应用价值将日益凸显,并将逐渐成为商业银行对公业务的核心竞争力之一。

(特约编辑:何雁明)

参考文献:

[1]Manyika, J.,M.Chui andB.Brown et al.Big Data:The Next Frontier for Innovation[R].Competition, and Productivity,2011.

[2]Franks, B.著,黄海,车皓阳,王悦等译.驾驭大数据[M].北京:人民邮电出版社,2013.

[3]杨威.大数据时代下的电子商务企业营销方式变革[J].中国电子商务,2014(14).

[4]高源,张桂刚.基于大数据的网络营销对策研究[J].湖北经济学院学报(人文社会科学版)2014(11).

[5]张湛梅,罗芸,屈强等.基于客户移动互联网内容偏好的大数据精确营销体系搭建[J].互联网天地,2013(4).