基于改进Mean Shift的运动目标跟踪算法

2016-04-11 01:16:39徐火希
兵器装备工程学报 2016年2期
关键词:目标跟踪

徐火希

(黄冈师范学院 电子信息学院,湖北 黄州 438000)



基于改进Mean Shift的运动目标跟踪算法

徐火希

(黄冈师范学院 电子信息学院,湖北 黄州438000)

摘要:为了提高传统Mean Shift算法在目标快速运动和被大面积遮挡两种情况下跟踪的效果,对Mean Shift跟踪算法进行了3点改进:采用Kalman滤波器预测运动目标轨迹,以提高算法对快速运动目标的鲁棒性;提出了一种融合Kalman滤波器残差和Bhattacharyya系数的遮挡处理机制,以提高目标被大面积遮挡时的跟踪效果;提出了一种基于自适应更新因子的目标模型更新机制,以提高动态适应能力。对比实验结果表明,改进算法能有效提高在上述两种情况下的跟踪效果,并且在遮挡情况下具有较好的鲁棒性。

关键词:均值漂移;卡尔曼滤波器;遮挡处理;目标跟踪

Citation format:XU Huo-xi.Moving Target Tracking Algorithm Based on Improved Mean Shift[J].Journal of Ordnance Equipment Engineering,2016(2):127-130.

目标跟踪是计算机视觉领域的研究热点之一,其主要目的是在连续帧图像序列中定位同一目标。自20世纪以来,出现了许多运动目标跟踪算法,Mean Shift是其中的热门算法之一。Mean Shift[1,2]作为一种无参数的核密度梯度估计方法,具有简洁高效、不需要先验知识、实时性好等优点,因而使用比较广泛。但由于缺乏模型更新机制、易收敛于局部非目标的极值点等原因,算法在快速运动和大面积遮挡等情况下跟踪效果不佳。对于前者,目前主要采用预测目标位置[3]的方法,也有通过在不同尺度下进行搜索匹配来提高收敛效果,如图像金字塔[4]和退火Mean Shift[5]等,但该类算法计算复杂,鲁棒性较差;对于后者,主要是采用Bhattacharyya系数进行遮挡检测[6,7],但是该系数可区分性较低,因此很难确定合适的判断阈值。

Kalman滤波器作为一种高效的递推估计算法,能够以较小的计算量准确预测目标的位置和速度[8]。本研究将其与Mean Shift跟踪算法相结合,采用Kalman滤波器预测目标的位置,能有效提高快速运动情况下的跟踪效果。同时充分结合目标的运动信息和颜色分布特征,提出一种融合Kalman滤波器残差和Bhattacharyya系数的遮挡处理机制,有助于提高遮挡情况下的跟踪效果。此外,还提出一种自适应目标模板更新机制,提高算法对场景的动态变化如遮挡等情况的适应性。

1基于Kalman滤波器和Mean Shift的跟踪算法原理

对于快速运动的目标,传统的Mean Shift跟踪算法中采取泰勒展开式近似计算Bhattacharyya系数,计算误差较大,容易导致跟踪失败。而此时如果采用Kalman滤波器进行预测,只要参数设置得当,会使预测位置更加接近当前帧中目标的实际位置,从而有利于提高跟踪效果。同时,由于目标的位置不是收敛的,而是按照一定轨迹变化,因此需要根据目标的实际位置对滤波器进行校正。算法主要包含以下4个阶段:

1) 目标模型建立阶段

(1)

2) Kalman预测阶段

对于跟踪阶段的每一帧图像,将Kalman滤波器预测的位置作为Mean Shift进行跟踪的起始位置。根据Kalman滤波器的预测模型,对应的预测阶段计算方程如下:

(2)

(3)

3) Mean Shift跟踪阶段

在跟踪阶段中,首先建立待选模型如下:

(4)

然后,计算两个模型相似度,一般采用Bhattacharyya系数。并将该系数在前一帧中目标位置中心y0处进行泰勒展开,近似可得:

(5)

(6)

其中,g(x)=-k′(x)。得到新位置后,再以该位置作为待选模型的新位置进行迭代,直到得到满足一定阈值要求的Bhattacharyya系数才停止跟踪过程。并将此时的待选模型位置作为目标在当前帧图像中的实际位置。

4) Kalman校正阶段

在跟踪结束后,为使滤波器的预测结果能够及时跟上目标位置的变化,需要采用目标的实际位置信息对Kalman滤波器进行校正。具体的校正方程如下:

(7)

(8)

(9)

其中:Yk为目标位置的观测向量,也即目标的实际位置;Kk为Kalman增益矩阵。

2融合Kalman滤波器残差和Bhattacharyya系数的遮挡处理机制

传统的Mean Shift算法采用颜色直方图作为模型特征进行跟踪,这对于目标小部分遮挡、轻微变形和旋转等情况都具有较好适用性。但是颜色直方图是一种弱的模型表达方式,当目标被大面积遮挡甚至完全遮挡时,待选模型的颜色直方图与目标模型的相似程度将大大降低,很有可能导致Mean Shift迭代收敛到图像中的其他位置而跟踪失败。而采用Kalman滤波器进行预测时,由于参考了目标的历史轨迹信息,因而即使在被遮挡情况下仍能比较准确地预测目标位置。但由于无法准确获取目标的观测位置,此时校正Kalman滤波器将会降低滤波器的准确性,因此有必要对遮挡情况进行判断。文献[8-9]采用混合相似度检测遮挡,并在模型更新过程中引入相互监督机制,文献[10]将跟踪窗口分块处理,并通过每个子模块的相似度变化来建立遮挡判断准则,都能取得一定效果,但计算过于复杂。文献[11]采用Kalman滤波器残差作为遮挡检测依据,仅仅只考虑了目标的运动信息,文献[12]采用目标模型与待选模型的Bhattacharyya系数作为依据,仅使用了目标的颜色分布信息,都不能较准确进行遮挡检测。本研究利用目标的运动信息和颜色直方图分布特征,提出一种融合Kalman滤波器残差和Bhattacharyya系数的遮挡处理机制。

定义预测位置Xk=[xk,yk]T和观测位置Yk=[xck,yck]T,则Kalman滤波器残差可以表示为

(10)

在出现遮挡时,目标模型与待选模型之间的Bhattacharyya系数急剧减小,导致r(k)急剧增加,因此可定义遮挡判别系数T(k)如下:

(11)

在正常情况下,T(k)变化不大;出现大面积遮挡时,T(k)会急剧增大,并且比r(k)的增加程度更大,比仅仅使用Kalman滤波器残差进行判断时变化更加明显,因此可以利用T(k)进行遮挡判断。

本研究提出的处理机制如下:首先设置阈值ε,并在每帧图像的跟踪过程结束后计算T(k)。然后将T(k)与阈值ε进行比较,如果T(k)增加到远大于ε,说明目标被大面积遮挡,立即停止校正Kalman滤波器,但仍然利用Kalman滤波器线性预测目标位置;如果T(k)重新减小到ε以下,则重新启动Kalman滤波器校正过程。

3基于自适应更新因子的目标模型更新机制

在目标跟踪过程中,会出现遮挡、光照变化等情况,因此必须更新背景模型以适应场景的动态变化。本文基于遮挡判别系数T(k)来更新目标模型,具体思路如下[13]:

(12)

其中:qk为k时刻的目标颜色模型;pk为k时刻Kalman滤波器预测的目标模型;ε1为模型更新阈值;λ为自适应的更新因子,与T(k)的梯度变化相关,且-0.5<λ<0.5。

当T(k)>ε1时,表明场景中出现遮挡、光照变化等情况。并且如果T(k)的梯度正向变化,说明场景中动态变化较大,Mean Shift跟踪的结果误差较大,而Kalman滤波器由于结合了目标的历史轨迹信息,因此其在当前时刻预测的目标模型可信度更高,所以令λ>0,使对应的预测状态在目标模型中的比重更大,反之令λ<0,使上一时刻的目标模型所占比重更大。如果T(k)≤ε1,表明场景变化不大,但是为了适应可能出现的场景缓慢变化,此处直接按上一时刻的目标模型进行更新。

4实验结果与分析

4.1目标快速运动情况

如图1所示,采用的视频序列为模拟的足球比赛视频,其中上、下分别为传统Mean Shift算法和改进算法的跟踪效果图。可以看到,在足球飞行过程中,在第310帧和320帧时,足球处于上升阶段,采用两种算法都能够跟踪足球飞行轨迹,但改进算法的跟踪效果更好,能够用跟踪框准确锁定序列中的足球位置,而传统的Mean Shift 算法仍有一定偏差。在第330帧时, 足球处于下坠阶段,运动速度更快。此时,传统的Mean Shift算法跟踪误差较大,跟踪框与目标的实际位置相距较远,而改进算法仍能够准确跟踪足球运动轨迹。这是由于在目标快速运动时,Kalman滤波器仍能够准确预测目标轨迹,从而提高了跟踪效果。

4.2目标被完全遮挡情况

如图2所示,所用视频序列为自拍视频,其中上图、下图分别为传统算法和改进算法的跟踪效果图。在第256帧时,目标未被遮挡,两种算法都能够较好地跟踪目标。随后在行进过程中,目标三次被树木完全遮挡。在第390帧时,目标第三次被完全遮挡,此时采取传统的Mean Shift算法已经完全无法搜寻到和目标模型匹配的位置。而相比之下,改进算法仍然能准确跟上目标位置的变化,但此时只进行了Kalman预测过程,没有开启校正过程。在第412帧时,目标再次出现,改进算法能迅速锁定目标,而传统算法误差巨大。同时,在此阶段,目标出现了三次遮挡情况,改进算法都能够准确地定位图像中目标位置,说明本文设计的遮挡处理机制取得了较好的跟踪效果,并且目标模型更新机制对遮挡具有较好的鲁棒性。

图1 目标快速运动情况下跟踪效果对比

图2 目标被完全遮挡情况下跟踪效果对比

5结论

本研究对Mean Shift算法在目标快速运动和被大范围遮挡两种情况下的跟踪问题进行了研究,主要创新点如下:

1) 提出将Kalman滤波器预测得到的目标位置作为Mean Shift迭代的起始位置,并根据目标的观测位置反馈校正Kalman滤波器。实验证明该方式有效提高了在目标快速运动情况下的跟踪效果。

2) 提出了融合Kalman滤波器残差和Bhattacharyya系数的遮挡处理机制,能有效提高在目标被大面积遮挡情况下的跟踪效果。

3) 提出一种基于自适应更新因子的目标模型更新机制,实验表明对遮挡情况具有较好的鲁棒性。

参考文献:

[1]CHENG Y Z.Mean shift,mode seeking,and clustering[J].Pattern Analysis and Machine Intelligence,IEEE Computer Society,1995,17(8):790 -799.

[2]COMANICIU D,RAMESH V,MEER P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(2):564-577.

[3]朱胜利,朱善安,李旭超.等.快速运动目标的Mean Shift跟踪算法[J].光电工程,2006,33(5):66-70.

[4]LI S X,CHANG H X,ZHU C F.Adaptive pyramid mean shift for global real-time visual tracking[J].Image and Vision Computing,2010,28(3):424-437.

[5]SHEN C H,BROOKS M J,VAN DEN HENGED.A Fast Global Kernel Density Mode Seeking:Applications to Localization and Tracking[J].IEEE Transactions on Image Processing,2007,16(5):1457-1469.

[6]章学静,陈禾,杨静.结合卡尔曼滤波器和Mean Shift的抗遮挡跟踪算法[J].北京理工大学学报,2013,33(10):1056-1061.

[7]左军毅,程咏梅,王正平.一种对背景干扰及遮挡鲁棒的视频目标跟踪算法[J].计算机测量与控制,2009,17(11):2292-2294.

[8]邹小东,于鸿洋,张萍.基于Camshift与Kalman滤波算法的动态目标跟踪[J].电视技术,2012,36(15):120-123.

[9]杨红霞,杭亦文,刘旭.基于Meanshift与kalman滤波器的视频目标跟踪算法[J].武汉理工大学学报:信息与管理工程版,2012,34(2):147-150.

[10]王建华,王春平,梁伟,等.Mean Shift跟踪的背景优化及动态分析[J].电光与控制,2012,19(2):17-21.

[11]韩涛,吴衡,张虎龙.Kalman滤波融合优化 Mean Shift 的目标跟踪算法[J].光电工程,2014,41(6):56-62.

[12]王江涛,杨静宇.遮挡情况下基于 Kalman 均值偏移的目标跟踪[J].系统仿真学报,2007,19(18):4216-4220.

[13]常发亮,刘雪,王华杰.基于均值漂移与卡尔曼滤波的目标跟踪算法[J].计算机工程与应用,2007,43(12):50-52.

[14]赵齐月,毛征孟,凡刚,等. 基于特征贡献度的MeanShift目标跟踪[J].兵工自动化,2015(8):37-40.

(责任编辑杨继森)

Moving Target Tracking Algorithm Based on Improved Mean Shift

XU Huo-xi

(School of Electronic Information, Huanggang Normal University, Huangzhou 438000, China)

Abstract:To improve the tracking effect of traditional Mean Shift algorithm in fast motion and being blocked in large areas of moving targets, the Mean Shift algorithm was improved in three aspects in this paper. Firstly, a Kalman filter was used to predict the target tracks to improve the robustness to fast targets. Secondly, an occlusion-handling mechanism combining Kalman filter residuals and Bhattacharyya coefficients was put forward to improve the tracking effect of largely-occluded targets. Thirdly, an update mechanism based on an adaptive update factor was proposed to improve the dynamic adaptability of target models. At last, the comparison experiments results showed that the developed algorithm could improve the tracking effect in both cases and had good robustness to occlusion.

Key words:Mean Shift; Kalman filter; occlusion handling; targets tracking

文章编号:1006-0707(2016)02-0127-04

中图分类号:TP391

文献标识码:A

doi:10.11809/scbgxb2016.02.031

作者简介:徐火希(1969—),男,博士,讲师,主要从事计算机视觉、数字信号处理研究。

收稿日期:2015-10-20;修回日期:2015-11-06

本文引用格式:徐火希.基于改进Mean Shift的运动目标跟踪算法[J].兵器装备工程学报,2016(2):127-130.

【信息科学与控制工程】

猜你喜欢
目标跟踪
多视角目标检测与跟踪技术的研究与实现
基于改进连续自适应均值漂移的视频目标跟踪算法
基于重采样粒子滤波的目标跟踪算法研究
航空兵器(2016年5期)2016-12-10 17:12:24
空管自动化系统中航迹滤波算法的应用与改进
科技视界(2016年5期)2016-02-22 12:25:31
智能视频技术在电力系统领域的应用
基于车牌识别的机混车道视频测速算法
自车速测量中的目标检测与跟踪技术
基于SIFT特征和卡尔曼滤波的运动目标跟踪方法
基于目标跟踪的群聚行为识别
科技与创新(2015年5期)2015-04-20 01:50:33
图像跟踪识别技术在煤炭运量视频管理系统中的研究