李益+张一卉+李化银
摘 要:本文主要利用拟南芥、玉米、牵牛花和金鱼草的类黄酮合成途径推测并绘制了芸薹属花青素合成途径;紫色芸薹属花青素合成结构基因CHS、F3′5′H、DFR和ANS的高水平转录是芸薹属着色的直接原因;调控花青素合成途径中后期合成基因的R2R3-MYB类转录因子启动子突变并高水平转录是芸薹属蔬菜组织中花青素大量积累的关键。
关键词:芸薹属;花青素;结构基因;R2R3-MYB;bHLH
中图分类号:S312:Q946.83+6 文献标识号:A 文章编号:1001-4942(2014)11-0137-06
芸薹属蔬菜味道鲜美、营养丰富,备受大家的喜爱。中国白菜和甘蓝都是世界卫生组织推荐的营养蔬菜,尤其是中国白菜是中国北方冬季主要蔬菜[1]。芸薹属蔬菜中有多个紫色物种,如紫菜薹、紫甘蓝、紫色花椰菜和紫色白菜等(图1),它们之所以显示艳丽红紫色是因为含有大量的花青素。目前,越来越多资料证明花青素及其与糖等配基结合物能很好清除体内的自由基[2],在抗氧化衰老、抗癌与抗动脉硬化等方面具有很强的医疗保健作用[3]。紫色芸薹属蔬菜花青素含量都很高,因此是非常有价值的天然色素资源。
1 紫色芸薹属花青素的种类和分布
花青素是构成植物颜色的主要水溶性色素之一[8],形成于细胞质而储存于液泡[9]。花青素具有C6-C3-C6基本碳架结构,它基环的3、5、7位羟基可以通过糖苷键结合不同种类的单糖或多糖形成不同种类的花色苷。花色苷的羟基还可以结合一个或几个分子的香豆酸、阿魏酸、咖啡酸、丙二酸、芥子酸和琥珀酸等有机酸形成稳定的花色苷结构[10]。花青素的颜色主要取决于羟基在B环上的位置,也因所带羟基、甲基及醣基的种类、数目以及连接位置不同而产生差异[11]。花青素的种类主要有橙红色花葵色素(Pelargonidin)、紫红色矢车菊色素(Cyanidin)、蓝色飞燕草色素(Delphinidin)、红色芍药花色素(Peonidin)、蓝紫色牵牛花色素(Petunnidin)、蓝紫色锦葵色素
化合成无色矢车菊素,进而由无色花青素二氧化酶(leucoanthocyanidin dioxygenase, LDOX)或花青素合酶(anthocyanidin synthase, ANS)形成显色的矢车菊花青素(在紫白菜[6,17]、紫甘蓝[18~20]和紫色花椰菜[4]中大量存在),再进一步由葡萄糖-类黄酮糖基转移酶[uridine diphosphate (UDP)- glucose: flavonoid- O- glycosyltransferase, UFGT]和转甲基酶(methyltransferases, MT)催化形成芍药色素(紫白菜[17]和紫甘蓝[18]中测出);二氢黄酮醇还可经类黄酮-3′,5′-羟化酶(flavonoid-3′,5′-hydroxylase, F3′5′H)、DFR、ANS/LDOX生成飞燕草色素(紫白菜[17]中测出),然后经UFGT和MT生成牵牛花色素 (紫白菜[17]中测出),最后经过MT催化生成锦葵素(紫甘蓝[17]、紫白菜[18]中测出);另外,二氢黄酮醇可直接经DFR、ANS/LDOX和UFGT生成花葵素(紫甘蓝[21]中测出)。
芸薹属植物花青素在植物器官分布上具有组织特异性(图3),紫罗兰小白菜[6]的花青素仅分布于上表皮临近的几层叶肉细胞中(图3C),而紫甘蓝[22]上下表皮及临近的几层叶肉细胞中都含有花青素(图3B)。段岩娇等[7]用‘09S17与紫菜薹经多代测交、自交选育获得的紫心大白菜‘11S96(图3A),花青素分布在上下表皮临近的基础叶肉细胞中。花青素在叶片上的分布不同表明它们的着色调控机理存在差异。
2 CHS、F3′5′H、DFR和ANS/LDOX的高水平转录是芸薹属蔬菜形成紫色性状的直接原因 通过分析花青素合成途径中酶基因功能与紫色性状之间的关系发现:结构基因CHS、F3′5′H、DFR和ANS/LDOX高水平表达与紫色性状形成关系最为密切。CHS是花青素合成启动酶,其基因反义表达可以使牵牛花紫色性状退去,邵莉等[23]认为这种现象可能与共抑制有关。F3′5′H是形成飞燕草色素、牵牛花素和锦葵素的关键酶(图2),紫色马铃薯缺失F3′5′H基因则块茎表皮失去红色和紫色,且F3′5′H对紫色性状产生的作用在月季花[24]、烟草[25]、美女樱[26]、香石竹[27]中均通过异源表达得到证实。芸薹属蔬菜紫心白菜[17]和紫色甘蓝[18]含有飞燕草和锦葵素,不过目前芸薹属蔬菜中还未有F3′5′H基因表达水平变化的报道。DFR特异地催化二氢黄酮醇还原成无色的花色素,是花青素合成的瓶颈[28],很多作物紫色性状的形成与其有关,洋葱鳞茎缺失DFR时鳞茎失去紫色[29],而异源DFR在白色康乃馨中表达,其花色由白变紫[24]。ANS在花色素苷合成过程中将无色花青素苷元氧化,产生有颜色的花青苷元,ANS缺失可以使蓝猪耳花色由蓝变白[30],使洋葱表皮颜色由紫变黄[31],水稻转入ANS种皮变紫红色[32]。CHS、DFR和ANS在紫色芸薹属作物中的重要作用也逐渐得到验证,段岩娇等[7]对紫心大白菜‘11S96中心着色叶和外叶绿色叶片花青素合成途径中的结构基因进行了荧光定量PCR表达分析,发现着色叶片中全部花青素合成的结构基因表达水平均上升,其中DFR和ANS基因转录水平上调万倍;张彬[5]对羽衣甘蓝的显紫色的‘红鸽与不显紫色‘白鸽、紫甘蓝和普通甘蓝以及红菜薹和小青菜的花青素合成相关的结构基因表达进行了分析,发现ANS和DFR表达量明显上升是颜色产生差异的原因。紫色花椰菜突变体Pr-D之所以显色,DFR和LDOX转录水平显著上调是其重要原因[4]。
3 转录调控是芸薹属蔬菜着色的关键
Gonzllez等[33]把拟南芥中花青素合成途径中的结构基因分为早期合成基因(Early biosynthesis genes,EBGs)CHS、CHI、F3H、F3′H和FLS1与后期合成基因(Late biosynthesis genes,LBGs)DFR和LDOX/ANS等(图2)。这些结构基因分别受特异的MYB转录因子调控,R2R3-MYB类转录因子基因AtMYB11/PFG1、AtMYB12/PFG2和AtMYB111/PFG3调控拟南芥所有组织中花青素合成途径EBGs基因的表达[34],而DFR和ANS/LDOX等LBGs受AtMYB75/PAP1、AtMYB90/PAP2、AtMYB113和AtMYB114转录因子基因调控[33,35]。调控DFR和ANS/LDOX基因的MYB类转录因子对植物组织着色作用更突出,因此,当调控LBGs的转录因子表达水平发生变化时植物组织颜色会发生剧烈变化。例如,拟南芥中转入PAP1基因可以产生紫色性状[36];葡萄VvMYBA1和VvMYBA2与拟南芥AtMYB75、AtMYB90、AtMYB113和AtMYB144同源,当VvMYBA1的启动子被反转录转座子插入或VvMYBA2编码区存在突变点时,葡萄(Vitis vinifera)失去红色[37]。苹果MdMYB10是调控LBGs转录的MYB转录因子,启动子中5个重复的23 bp基序使具有自激活特性[38],因此在‘Red Field苹果品种所有组织中表达而使叶片、花朵和果肉都着红色。苹果果实外皮层组织的花青素合成则由MdMYB10 同源基因MdMYB110a调控,两者在特定的苹果品种内具有保守的功能,对果实成熟的响应及表达模式存在差异[39]。在紫色芸薹属蔬菜着色的研究中,Yuan等[22]调查了4个紫色甘蓝品种中具有激活花青素合成的[KPRPR(S/T)F]序列,且分析了与拟南芥AtPAP1和AtPAP2同源的4个R2R3-MYB转录因子BoMYB1~4的表达情况,结果发现仅有BoMYB2与紫甘蓝着色有关。Chiu等[4]利用精细制谱技术和候选基因筛选的方法鉴定出紫色花椰菜突变体基因Pr是紫色花椰菜着色的决定基因。Pr之所以超量表达是因为启动子上游插入转座子,从而使花椰菜颜色显紫色。通过序列分析表明紫色花椰菜Pr核酸序列与紫甘蓝BoMYB2核酸序列的相似度为99.6%,进一步说明紫色芸薹属蔬菜中调控LBGs的R2R3-MYB转录因子对着色的调控作用。紫心大白菜‘11S96外叶为绿色,球叶呈现不同深度的紫色,段岩娇等[7]对已在十字花科中获得的对花青素合成有影响的6个R2R3-MYB转录调控因子基因(MYB0、MYB1、MYB2、MYB4、MYB12和MYB111)进行实时荧光定量PCR分析发现,MYB2、MYB4、MYB12和MYB111在整个紫心大白菜中着色部分大幅上调,其中MYB2和MYB4最为显著,推测这可能是紫心大白菜花青素积累的重要原因。endprint
调控DFR和ANS/LDOX等结构基因转录的R2R3-MYB转录因子受环境因子调节。光是花青素合成调控的重要因素,紫甘蓝转录因子BoMYB113可能参与光调控花青素合成过程,青甘蓝幼苗在光照处理的条件下,BoMYB113表达量差异较高,并有少量花青素合成,但黑暗条件下BoMYB113表达量明显降低,花青素的含量也几乎难以测出。红菜薹和小青菜幼苗BrPAP1、BrPAP2、BrMYB113、BrMYB114同样受光诱导表达[5]。温度是影响花青素合成的重要因素,羽衣甘蓝品种‘红鸽是‘白鸽的突变体,常温下它们的颜色都为绿色,当在低温下‘红鸽显紫色,转录因子基因BoPAP1在‘红鸽受低温后显著表达,强烈预示BoPAP1是低温条件下造成‘红鸽呈现紫色的原因[5]。缺素也可使植物显色,拟南芥缺失N素和P素时,转录因子基因AtPAP1、AtPAP2、AtGL3和AtMYB12转录水平都显著提高[40]。紫甘蓝缺失N素和P素BoMYB2转录水平上升,花青素合成量也显著提高[22]。
转录因子R2R3-MYB可以单独发挥调节作用,也可以与bHLH(TT8、GL3和EGL3)[33,35,41,42]以及WD40(TTG1) [42,43]类转录因子组成蛋白复合物MYB-bHLH-WD40 (MBW)激活花青素合成的结构基因。MBW调控花青素合成具有物种特异性,玉米中的 MYB类转录因子ZmC1需要和bHLH类转录因子ZmR或ZmB相互作用后协同激活结构基因DFR的表达,而ZmC对DFR的激活作用却不需要bHLH转录因子的参与;苹果MdbHLH3 和MdbHLH33 转录因子是MYB类转录因子不可或缺的协作因子[35]。外界低温条件可诱导MdbHLH3蛋白磷酸化,增强其启动子结合能力和转录活性,进而增强苹果花青苷的合成[44]。紫色花椰菜[4]和紫甘蓝中[22]MYB转录因子可能与bHLH组成复合蛋白来激活结构基因的过量表达调节花青素的合成,因为在BoMYB2转录过程中BoTT8同样大量转录,值得注意的是光照和黑暗处理条件下紫甘蓝中的BoTT8的表达水平是一致的,这与紫甘蓝在黑暗条件下仍然能够少量积累花青素的现象吻合[5]。在紫菜薹花青素合成过程中结构基因的转录对bHLH类转录因子的依赖更为明显,BrTT8与CHS、F3H、ANS、DFR 这4个关键结构基因的表达模式是一致的,即在红菜薹花青素积累的组织中都有高丰度的表达,在红菜薹没有花青素积累的组织还有小白菜中的表达量都非常低,但是羽衣甘蓝‘红鸽调控花青素合成的BoPAP1和BoPAP2转录因子调控花青素合成却不依赖于BoTT8[5]。
4 总结与展望
综上可知,花青素合成受结构基因、调节基因和环境因子的影响。芸薹属蔬菜紫甘蓝BoMYB2和紫色花椰菜Pr基因是两种蔬菜着色的决定因素,它们上调DFR和ANS/LDOX等基因的表达。紫甘蓝内叶和外叶的花青素含量相差不大。但是,紫心大白菜花青素含量却是由外叶到中心叶逐渐增多,形成的机理还不得而知。光敏色素A(phytochromeA,phyA)在极低的光强下能调控光形态建成,而在高光强条件下易分解,我们推测光通过phyA对紫心白菜着色起调控作用。光照产生抑制因子,抑制花青素合成结构基因的转录,而随着光强的减弱抑制物合成也减少,从而形成白菜的紫心现象。大白菜紫心形成的机制尚需进一步探索。
参 考 文 献:
[1] 郁有健, 张耀伟, 张德双. 大白菜紫色性状的 SRAP 连锁标记的筛选[J]. 分子植物育种, 2009, 7(3):573-578.
[2] 张宁, 胡宗利, 陈绪清, 等. 植物花青素代谢途径分析及调控模型建立[J]. 中国生物工程杂志, 2008,28(1):97-105.
[3] 胡雅馨, 李京, 惠伯棣, 等. 蓝莓果实中主要营养及花青素成分的研究[J]. 食品科学, 2006, 27(10):600-603.
[4] Chiu L W, Zhou X, Burke S, et al. The purple cauliflower arises from activation of a MYB transcription factor [J]. Plant Physiology, 2010, 154:1470-1480.
[5] 张彬. 芸薹属植物花青素生物合成代谢途径调控机制的研究[D]. 重庆:重庆大学, 2011.
[6] 李长新. 紫色小白菜花青素理化性质研究[D]. 杨凌:西北农林科技大学, 2011.
[7] 段岩娇, 张鲁刚, 何琼, 等. 紫心大白菜花青素积累特性及相关基因表达分析[J].园艺学报, 2012, 39(11):2159-2167.
[8] Clifford M N. Anthocyanins-nature, occurrence and dietary burden [J]. Science of Food and Agriculture, 2000, 80:1063-1072.
[9] Fleschhut J, Kratzer F, Rechkemmer G, et al. Stability and biotransformation of various dietary anthocyanins in vitro [J]. European Journal of Nutrition, 2006, 45(1):7-18.
[10] Arapitsas P, Sjoberg P J R, Turner C, et al. Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry [J]. Food Chemistry, 2008, 109:219-226.endprint
[11] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. The Plant Journal, 2008, 54:733-749.
[12] 任玉林, 李华, 邴贵德. 天然食用色素——花色苷[J]. 食品科学, 1995(16):22-27.
[13] Broun P. Transcriptional control of flavonoid biosynthesis:A complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis [J]. Curr. Opin. Plant Biol., 2005, 8(3): 272-279.
[14] Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research? [J].New Phytologist, 2005, 165(1):9-28.
[15] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways [J]. Trends Plant Science, 2005, 10:236-242.
[16] Grotewold E. The genetics and biochemistry of floral pigments[J]. Annu. Rev. Plant Biol., 2006, 57:761-780.
[17] 林文超, 王德森, 刘维信. 紫色白菜花色苷组分鉴定及抗氧化性研究[C]//中国园艺学会十字花科蔬菜分会第十届学术研讨会论文集. 2012.
[18] 王海. 紫甘蓝花青素的提取纯化、结构鉴定及其生物学作用的研究[D]. 泰安:山东农业大学, 2012.
[19] 王倩. 紫甘蓝色素的研究[D]. 无锡:江南大学, 2011.
[20] 刘玉芹, 江婷, 赵先恩, 等. 高效液相色谱-四极杆飞行时间质谱分析紫甘蓝和羽衣甘蓝中花色苷[J].分析化学, 2011, 39(3):419-424.
[21] McDougall G J, Fyffe S, Dobson P, et al. Anthocyanins from red cabbage-stability to simulated gastrointestinal digestion [J]. Phytochemistry, 2007, 68:1285-1294.
[22] Yuan Y X, Chiu L W, Li L, et al. Transcriptional regulation of anthocyanin biosynthesis in red cabbage [J]. Planta, 2009, 230:1141-1153.
[23] 邵莉, 李毅, 杨美珠, 等. 查尔酮合酶基因对转基因植物花色和育性的影响[J]. 植物学报,1996, 38(7): 517-524.
[24] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. Plant Cell, 1995, 7:1071-1083.
[25] 王宇尘. 转F3′5′H基因烟草的花色改变[D]. 重庆:西南大学, 2005.
[26] Katsumoto Y, Fukuchi-Mizutani, Fukui Y, et al. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin [J]. Plant Cell Physiol., 2007, 48(11): 1589-1600.
[27] Tanaka Y, Fukui Y, Fukuchi-Mizutani M et al. Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene [J].Plant and Cell Physiology,1995, 36:1023-1031.
[28] Feyissa D, Lvdal T, Olsen K, et al. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves [J]. Planta, 2009, 230:747-754.
[29] Kim J S, Lee B H, Kim S H, et al. Response to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf [J]. Journal of Plant Biology, 2006, 49: 16-25.endprint
[30] 蒋明, 陈孝赏, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表达与序列分析 [J].浙江大学学报:农业与生命科学版,2011, 37(4):393-398.
[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.
[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.
[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.
[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.
[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.
[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.
[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.
[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.
[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.
[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.
[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.
[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.
[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.
[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 东 农 业 科 学 2014,46(11):143~147endprint
[30] 蒋明, 陈孝赏, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表达与序列分析 [J].浙江大学学报:农业与生命科学版,2011, 37(4):393-398.
[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.
[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.
[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.
[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.
[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.
[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.
[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.
[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.
[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.
[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.
[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.
[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.
[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.
[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 东 农 业 科 学 2014,46(11):143~147endprint
[30] 蒋明, 陈孝赏, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表达与序列分析 [J].浙江大学学报:农业与生命科学版,2011, 37(4):393-398.
[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.
[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.
[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.
[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.
[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.
[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.
[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.
[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.
[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.
[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.
[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.
[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.
[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.
[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 东 农 业 科 学 2014,46(11):143~147endprint