黄小林,许恒毅*,熊勇华,曲 锋,杨 林
(南昌大学 食品科学与技术国家重点实验室,江西 南昌 330047)
磁性纳米材料在食源性致病菌分离中应用的研究进展
黄小林,许恒毅*,熊勇华,曲 锋,杨 林
(南昌大学 食品科学与技术国家重点实验室,江西 南昌 330047)
食源性致病菌是影响食品安全的主要因素之一。食品中污染的致病菌数量通常较少,加上其基质复杂,常规分析方法常无法直接对致病菌进行高灵敏、高特异的检测。经过生物学修饰和功能化的磁性纳米材料,可特异性地识别食品基质中少量的致病菌,并通过磁场对靶细菌进行快速及高特异性的选择性分离,实现了食品样品中少量致病菌的特异性分离富集,达到了后续分析检测的纯度和数量。本文综述了磁性纳米材料在食源性致病菌分离富集中的研究进展。
磁性纳米材料;食源性致病菌;分离;富集
食品安全问题一直是备受各国政府和群众关注的焦点问题,也是关系到国计民生的重大问题。其中,由致病菌引起的食品污染问题是主要的食品安全问题之一。据报道,美国每年有7600万人感染食源性疾病,其中有32500例住院病例和5000例致死病例,而由食源性致病菌引起的占19.4%[1]。有资料显示,2006年我国食源性疾病监测地区暴发食源性疾病事件共594起,累计发病13849例,死亡67例,其中由食源性致病菌引起的占48.3%[2]。就此,寻找快速检测食源性致病菌的方法尤为迫切。然而,现有检测方法对已预增菌培养的样品灵敏度较高,而对目的菌数量少或者存在干扰性物质的普通食品样品,灵敏度低且特异性差,前期对目的菌进行预增菌或高效分离富集是实现快速检测的重要前提。因此,选择合适的分离方法,使目的菌从复杂的食品基质中分离出来,同时清除食品基质中干扰后续检测的物质,对实现目的菌灵敏且特异的检测至关重要。目前常用的细菌分离方法分为选择性和非选择性两类,常见的选择性方法有基于抗体的免疫分离等,而常见的非选择性方法有离心、过滤、交换树脂、吸附等。表1总结了从食品中分离富集细菌的各种方法及其优缺点。
近年来,基于磁性微球的免疫磁分离法(immunomagnetic separation,IMS)已被广泛应用于食源性致病菌的分离,在一定程度上取代了传统的增菌培养。但是受磁性微珠捕获效率、扩散速度以及其在食品基质中的不稳定性等诸多因素的限制,该方法的分离效率有限。随着纳米材料合成技术的迅猛发展,纳米级磁性材料的研究受到了广泛的关注,其在细胞分离、蛋白质分离、核酸分离和微生物分离等方面都有重要的应用。磁性纳米材料与普通的磁性微珠相比,直径从微米级减小到纳米级,具有更理想的比表面积和反应动力学特征,且克服了磁性微球稳定性差、扩散速度慢、非特异性吸附强以及易损伤目标菌等缺点,在致病菌分离富集中具有良好的应用前景。本文综述了磁性纳米材料在食源致病菌分离富集中应用的研究进展。
表1 食源性致病菌的分离技术及其优缺点Table1 Technologies for the separation of foodborne pathogens and their advantages and disadvantages
磁性纳米材料的生物学修饰是利用磁性纳米材料分离富集致病菌的前提,将生物亲和分子修饰到磁性纳米材料的表面,赋予其捕获目标菌的能力,间接地“磁化”细菌细胞(磁细菌),使磁细菌在外界磁场作用下能够从样品液中分离。另外,经修饰后的磁性纳米材料可以获得比单体生物分子更高的结合能力。例如,由于多个抗体分子可被修饰于磁性纳米粒子上,磁性纳米粒子经抗体修饰后,与目标菌的结合能力是单独抗体的8倍;同理,经甘露糖修饰后,与目标菌的结合能力比单体甘露糖强200倍[19-20]。
磁性纳米材料生物学修饰的方法有很多,大体分为直接修饰和间接修饰两种。直接修饰又分为物理吸附和共价偶联。物理吸附是指蛋白质等生物亲和分子和纳米材料间的疏水作用和静电作用;共价偶联是指先在纳米材料的表面修饰硫化物、胺或者羧基,通过这些基团与生物亲和分子形成共价键从而实现纳米材料生物学修饰[21-22]。间接修饰则需要利用一对具有强亲和力的分子,比如生物素-亲和素。先用亲和素包被纳米材料,再将要修饰的生物亲和分子标记生物素,通过生物素和亲和素的结合间接达到修饰磁性纳米材料的目的。
图1 Fe 1 Fe3O4磁性纳米粒子捕获致病菌的方式Fig.1 Ways of capturing pathogenic bacteria with magnetic Fe3O4nanoparticles
表2 磁性纳米材料在食源性致病菌分离中的应用Table2 Summary of the application of magnetic nanomaterials in the separation of foodborne pathogens
磁性纳米材料通过生物学修饰,获得可以捕获食源性致病菌的能力,再利用外界磁场从而达到分离菌体目的。表2总结了近几年磁性纳米材料在分离不同食品基质中食源性致病菌的研究。磁性纳米材料表面使用的修饰物不同,捕获食源性致病菌的方式也不同,总结于图1。
2.1 抗原-抗体
基于抗原抗体之间的特异性反应实现食源性致病菌捕获是最常用的方式,已被广泛应用于各种食源性致病菌的分离富集。食源性致病菌相应的抗体也是磁性纳米材料最常用的修饰物。将磁性纳米材料的表面包被相应抗体,利用抗体和细菌表面相应抗原间的特异性结合,将食源性致病菌和磁性纳米粒子连接,致病菌被“磁化”后,在外界磁场的作用下将目标菌从成份复杂的样品液中分离出来,便于后续检测。Varshney等[23]通过生物素-链霉亲和素将抗大肠杆菌抗体包被到磁性纳米粒子的表面,用于捕获牛肉样本中大肠杆菌O157∶H7,捕获效率达94.5%。Yang等[24]用相应抗体修饰氧化铁纳米粒子,结合实时定量聚合酶链式反应(realtime quantitative polymerase chain reaction,real-time qPCR),检测牛奶样品中的单增李斯特菌,检测限达452 CFU/mL。Ravindranath等[25]分别制备了包被有抗大肠杆菌抗体和抗沙门氏菌抗体的功能化磁性纳米粒子,用于分离鸡尾酒和菠菜牛奶提取液中相应的食源性致病菌,结合红外光谱分析,检测限达104~105CFU/mL。Cheng等[26]使用抗大肠杆菌O157∶H7抗体包被的磁性纳米粒子分离牛奶中的大肠杆菌O157∶H7,结合三磷酸腺苷(adenosine triphosphate,ATP)生物发光分析,检测限达20 CFU/mL。Wang等[27]制备了两种特异性抗体共修饰的磁性氧化铁纳米粒子用于同时分离菠菜中的沙门氏菌和金黄色葡萄球菌,结合表面增强拉曼散射分析,检测限达103CFU/mL。
2.2 黏附素(凝集素)-受体(糖类)
很多细菌会在其表面表达黏附素,它们能与宿主细胞表面相应受体结合,从而使细菌黏附在宿主细胞上。致病菌黏附宿主上皮细胞的机制与多种糖类有关。例如,大肠杆菌的表面可以表达产生多种黏附素,它们可以黏附宿主上皮细胞上的半乳糖、葡萄糖、果糖、岩藻糖、甘露糖和蔗糖等[12]。利用黏附素与受体结合的性质,经凝集素或糖类修饰的磁性纳米粒子可特异性地结合相应的食源性致病菌。EI-Boubbou等[28]用D-甘露糖修饰的磁性纳米粒子分离大肠杆菌,分离效率达88%以上。作者再结合X射线衍射、透射电镜、热重和红外光谱分析,在5 min内即可完成检测,检测限达104个菌体/mL。Payne等[29]用凝集素修饰的BioMag®粒子分离食品基质中的致病菌,结果显示,单增李斯特菌、金黄色葡萄球菌和沙门氏菌最低分离起始浓度分别为大于等于10 CFU/10 g(卡蒙贝尔奶酪)、1 CFU/10 g(炖牛排)和小于10 CFU/10 g(生牛肉)。Wang Yixian等[30]制备了基于凝集素的生物传感器,用于分离检测食品样品中的大肠杆菌O157∶H7,检测限达 3×103CFU/mL。
2.3 抗生素(万古霉素)
万古霉素是一种糖肽类抗生素,它可以与许多种革兰氏阳性菌形成紧密的连接,其机制是通过细胞壁上的端肽D-Ala-D-Ala的氢键与万古霉素联接[31]。一般认为,由于革兰氏阴性菌外膜的存在,万古霉素不能接触到D-Ala-D-Ala端肽,因而不能识别革兰氏阴性菌。据报道[32-33],经万古霉素修饰过的磁性纳米粒子同样可以捕获革兰氏阴性菌,并由透射电子显微镜的照片猜想万古霉素与革兰氏阴性菌连接的机制为细菌外膜上存在缺陷区域,使部分D-Ala-D-Ala端肽暴露给万古霉素。Kell等[31]随后验证了这一猜想。Gu等[32]在FePt磁性纳米粒子表面修饰万古霉素(FePt-Van),从大肠杆菌菌液中分离出菌体后再用透射电镜观察,检测限达15 CFU/mL。Kell等[31]制备了万古霉素修饰的磁性纳米粒子用于同时分离水样中革兰氏阳性菌及革兰氏阴性菌,结果显示,不同的致病菌间捕获效率相差很大(7%~88%)。Wan等[34]使用万古霉素修饰的磁性纳米粒子分离磷酸盐缓冲液中添加的海洋型硫还原型细菌(如,脱硫肠状菌属),结合生物传感器,检测限达1.8×104CFU/mL。Choi等[35]在磁性氧化铁纳米粒子表面修饰万古霉素,并用其对临床样本中的细菌进行分离,实验结果发现,革兰氏阳性菌的捕获效率为(84.84±1.70)%,而革兰氏阴性菌的捕获效率为(48.48±1.79)%。Chen等[36]用表面修饰有庆大霉素的磁性纳米粒子用于分离磷酸盐缓冲液中添加的金黄色葡萄球菌,最低分离的细菌浓度为0.5×103CFU/mL。
2.4 DNA互补序列
任何细菌都有其特异性的基因片段,该基因片段的互补寡核苷酸片段可以识别样品中的该种细菌。将寡核苷酸片段修饰后的磁性纳米材料用于选择性的分离目标DNA或RNA,再结合PCR鉴定,不仅省去样品的预处理,灵敏度也比普通PCR提高近10 倍[37]。Amagliani等[24]用与李斯特菌素O基因序列(hlyA)互补的寡核苷酸链修饰磁性氧化铁纳米粒子分离牛奶样品中的单增李斯特菌的DNA,结合PCR分析,检测限达10 CFU/mL。笔者[38]在2010年制备了分别针对单增李斯特菌和沙门氏菌的寡核苷酸修饰的磁性氧化铁纳米粒子用于分离鱼中单增李斯特菌和沙门氏菌的DNA,结果发现,单增李斯特菌和沙门氏菌的捕获效率分别为(62.5±10.0)%和(70.6±7.0)%。结合多重PCR分析,检测限达1 CFU/g。Xu Hongxia等[39]研究了不同食源性致病菌寡核苷酸修饰的磁性纳米粒子在致病菌分离中的应用,实验结果发现,该磁性纳米粒子可以快速富集相应致病菌(如,大肠杆菌O157、沙门氏菌等)。笔者进一步研究了同时使用食源性致病菌多个基因的互补寡核苷酸修饰的磁性纳米粒子分离相应致病菌,结合传感器检测,检测限达6×102CFU/mL。
2.5 螯合反应
脂多糖是革兰氏阴性菌外膜的重要组分,其中类脂A有大量的磷酸基团,用金属氧化物(氧化钛、氧化锆或氧化铝)包被磁性纳米粒子,通过金属氧化物与磷酸基团间的螯合反应,可与待测样品中革兰氏阴性菌形成复合物,在外界磁场的作用下可将食源性致病菌从成分复杂的待测液中非选择性分离出来,消除样品基质的干扰[40]。Chen等[40]在磁性氧化铁纳米粒子的表面包被二氧化钛,利用脂多糖和金属氧化物的螯合作用捕获尿样中的大肠杆菌、志贺氏菌和假单胞菌,磁分离富集菌体后经胰蛋白酶水解,再次磁分离除去磁性纳米粒子,最后用基质辅助激光解吸-电离质谱法(matrix-assisted laser desorption ionization mass spectrometry,MALDI-MS)鉴定蛋白序列,根据蛋白库中的信息确定细菌的种类。该方法是一种快速(耗时15 min)、特异性强(可区分两株不同的大肠杆菌)、灵敏(检测限达104个细胞/mL)的分离检测方法。2010年,笔者[41]使用表面修饰有二氧化钛的磁性氧化铁纳米粒子分离细菌混合液中的目标致病菌,随后分离到的致病菌在紫外灯照射下结合二氧化钛的灭菌作用,15 min内可以抑制99.9%以上的目标菌的生长。
如何从复杂的食品样品中高效特异地分离出数量极少的食源性致病菌,从而实现对目标菌高灵敏和高特异的检测,一直是食品安全领域的一大瓶颈。现今,磁性纳米材料合成技术迅猛发展,以及其各方面性能的不断完善,已被广泛应用于食源性致病菌的分离富集。自从磁性纳米材料应用于食源性致病菌分离以来,其快速(省去增菌培养的过程)、高效(捕获效率高)和消除杂质干扰的能力均给人们带来巨大惊喜。但在基于磁性纳米材料的食源性致病菌分离方面,仍存在一些问题值得研究:1)尽管磁性纳米材料捕获食源性致病菌的方式很多,但是能够实现高特异性捕获的不多,寻找可与致病菌特异性结合的生物亲和分子(如,适配体等)并将其应用于致病菌的磁分离值得探究;2)磁性纳米材料对细菌潜在的毒性问题;3)就微米级磁性材料而言,纳米级磁性材料分离食源性致病菌存在分离速度慢、磁场要求高的缺陷,怎样通过生物反应放大系统(如,生物素-
亲和素系统)实现磁细菌信号的级联放大,通过增大致病菌的磁性纳米材料结合容量,在较低的磁场强度下就能实现磁细菌的分离并减少磁分离时间值得研究;4)目前常用的免疫磁分离方法大多属于静态分离方法,存在分离体积小(1~1.5 mL)的缺陷,导致浓缩倍数低,从而造成磁富集效率不高,因此,探讨大体积(如15、50 mL)磁细菌快速分离具有重要的科学意义和实践价值。
[1] MEAD P S, SLUTSKER L, DIETZ V, et al. Food-related illness and death in the United States[J]. Emerging Infectious Diseases, 1999, 5: 607-625.
[2] 王竹天, 陈艳, 郭云昌, 等. 2006年中国食源性疾病暴发的监测资料分析[J]. 卫生研究, 2006, 39(3): 331-334.
[3] WANG R F, CAO W W, CERNIGLIA C E. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods[J]. Journal of Applied Microbiology, 1997, 83(6): 727-736.
[4] NEIDERHAUSER C, CANDRIAN U, HOFELEIN C, et al. Use of polymerase chain reaction for detection of Listeria monocytogenes in food[J]. Applied and Environmental Microbiology, 1992, 58(5): 1564-1568.
[5] LINDQVIST R. Preparation of PCR samples fromfood by a rapid and simple centifugation technique evaluated by detection of Escherichia coli O157:H7[J]. International Journal of Food Microbiology, 1997, 37(1): 73-82.
[6] UYTTENDAELE M, HOORDE V I, DEBEVERE J. The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese[J]. International Journal of Food Microbiolog, 2000, 54(3): 205-212.
[7] van der HORST H C, HANEMAAIJER J H. Cross-flow microfiltration in the food industry. State of the art[J]. Desalination, 1990, 77: 235-258.
[8] PETTIPHRE G L, RODRIGUES U M. Semi-automated counting of bacteria and somatic cells in milk using epifluorescence microscopy and television image analysis[J]. Journal of Applied Microbiology, 1982, 53(3): 323-329.
[9] THOMAS D S. Electropositively charged filters for the recovery of yeasts and bacteria from beverages[J]. Journal of Applied Microbiology, 1988, 65(1): 35-41.
[10] COAKLEY W T. Ultrasonic separations in analytical biotechnology[J]. Trends in Biotechnology, 1997, 15(12): 506-511.
[11] LITOPOULOU-TZANETAKI E, BAYLISS A, PATCHETT R A, et al. Adsorption of bacteria to ion-exchange materials[J]. Letters in Applied Microbiology, 1989, 9(6): 219-222.
[12] PEDERSEN L H, SKOUBOEL P, ROSSEN L, et al. Separation of Listeria monocytogenes and Salmonella berta from a complex food matrix by aqueous polymer two-phase partitioning[J]. Letters in Applied Microbiology, 1998, 26(1): 47-50.
[13] IMAM S H, GOULD J M. Adhesion of an amylolytic Arthrobacter sp. to starch-containing plastic films[J]. Applied and Environmental Microbiology, 1990, 56(4): 872-876.
[14] KENNEDY J F, BARKER S A, HUMPHREYS J D. Microbial cells living immobilised on metal hydroxides[J]. Nature, 1976, 261: 242-244.
[15] MARKX G H, DYDA P A, PETHIG R. Dielectrophoretic separation of bacteria using a conductivity gradient[J]. Journal of Biotechnology, 1996, 51(2): 175-180.
[16] BENNETT A R, DAVIDS F G C, VALHODIMOU S, et al. The use of bacteriophage-based systems for the separation and concentration of Salmonella[J]. Journal of Applied Microbiology, 1997, 83(2): 259-265.
[17] PORTER J, ROBINSON J, PICKUP R, et al. An evaluation of lectinmediated magnetic bead cell sorting for the targeted separation of enteric bacteria[J]. Journal of Applied Microbiology, 1998, 84(5): 722-732.
[18] TU S I, PATTERSON D, UKNALIS J, et al. Detection of Escherichia coli O157:H7 using immunomagnetic capture and luciferin-luciferase ATP measurement[J]. Food Research International, 2000, 33(5): 375-380. [19] El-BOUBBOU K, GRUDEN C, HUANG X, et al. Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation[J]. Journal of the American Chemical Society, 2007, 129(44): 13392-1 3393.
[20] SOUKKA T, HARMA H, PAUKKUNEN J, et al. Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates[J]. Analytical Chemistry, 2001, 73(10): 2254-2260.
[21] TAN Weihong, WANG Kemin, HE Xiaoxiao, et al. Bionanotechnology based on silica nanoparticles[J]. Medicinal Research Reviews, 2004, 24(5): 621-638.
[22] ZHAO Xiaojun, HILLIARD L R, MECHERY S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42): 15027-15032.
[23] VARSHNEY M, YANG Liju, SU Xiaoli, et al. Magnetic nanoparticleantibody conjugates for the separation of Escherichia coli O157:H7 in ground beef[J]. Journal of Food Protection, 2005, 68(9): 1804-1811.
[24] YANG H, QU L W, WIMBROW A N, et al. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR[J]. International Journal of Food Microbiology, 2007, 118(2): 132-138.
[25] RAVINDRANATH SP, MAUER L J, DEB-ROY C, et al. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes[J]. Analytical Chemistry, 2009, 81(8): 2840-2846.
[26] CHENG Yuxiao, LIU Yajun, HUANG Jingjing, et al. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli[J]. Talanta, 2009, 77(4): 1332-1336.
[27] WANG Yuling, RAVINDRANATH S, IRUDAYARAJ J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes[J]. Analytical and Bioanalytical Chemistry, 2011, 399(3): 1271-1278.
[28] SHARON N. Carbohydrates as future anti-adhesion drugs for infectious diseases[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2006, 1760(4): 527-537.
[29] PAYNE M J, CAMPBELL S, KROLL R G. Lectin-magnetic separation can enhance methods for the detection of Staphylococcus aureus, Salmonella enteritidis and Listeria monocytogenes[J]. Food Microbiology, 1993, 10(1): 75-83.
[30] WANG Yixian, YE Zunz hong, SI Chengyan, et al. Monitoring of Escherichia coli O157:H7 in food samples using lectin based surface plasmon resonance biosensor[J]. Food Chemistry, 2013, 136: 1303-1308.
[31] KELL A J, STEWART G, RYAN S, et al. Vancomycin-modi ed nanoparticles for ef cient targeting and preconcentration of gram-positive and gram-negative bacteria[J]. ACS Nano, 2008, 2(9): 1777-1778.
[32] GU H, HO P L, TSANG K W T, et al. Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentration[J]. Chemical Communications, 2003, 15: 1966-1967.
[33] GU Hongwei, XU Keming, XU Chenjie, et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection[J]. Chemical Communications, 2006, 9: 941-949.
[34] WAN Yi, ZHANG Dun, HOU Baorong. Determination of sulphatereducing bacteria based on vancomycin-functionalised magnetic nanoparticles using a modi cation-free quartz crystal microbalance[J]. Biosensors and Bioelectronics, 2010, 25(7): 1847-1850.
[35] LEE H J, PARK B J, WANG K K. Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria[J]. Chemical Communications, 2012, 48: 4591-4593.
[36] CHEN Longyan, ZHANG Jin. Bioconjugated magnetic nanoparticles for rapid capture of gram-positive bacteria[J]. Journal of Biosensors & Bioelectronics, 2012, S11:005. doi:10.4172/2155-6210.S11-005.
[37] AMAGLIANI G, OMICCIOLI E, CAMPO A, et al. Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples[J]. Journal of Applied Microbiology, 2006, 100(2): 375-383.
[38] AMAGLIANI G, OMICCIOLI E, BRANDI G, et al. A multiplex magnetic capture hybridisation and multiplex real-time PCR protocol for pathogen detection in seafood[J]. Food Microbiology, 2010, 27(5): 580-585.
[39] XU Hongxia, SHA M Y, CROMER R, et al. Raman spectroscopy for nanomaterials characterization[M]. Mountain View: Springer Berlin Heidelberg, 2012: 531-551.
[40] CHEN W J, TSAI P J, CHEN Y C. Functional nanoparticle-based proteomic strategies for characterization of pathogenic bacteria[J]. Analytical Chemistry, 2008, 80(24): 9612-9621.
[41] CHEN Weijen, CHEN Yuchie. Fe3O4/TiO2core/shell magnetic nanoparticle-based photokilling of pathogenic bacteria[J]. Nanomedicine, 2010, 5(10): 1585-1593.
[42] VARSHNEY M, LI Y, SRINIVASAN B, et al. A label-free, micro uidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples[J]. Sensors and Actuators B: Chemical, 2007, 128(1): 99-107.
[43] VARSHNEY M, LI Y. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples[J]. Biosensors and Bioelectronics, 2007, 22(11): 2408-2414.
[44] PAL S, ALOCILJA E C. Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples[J]. Biosensors and Bioelectronics, 2009, 24(1): 1437-1444.
[45] SETTERINGTON E B, CLOUTIER B C, OCHOA J M, et al. Rapid, sensitive, and specific immunomagnetic separation of foodborne pathogens[J]. International Journal of Food Safety, Nutrition and Public Health, 2011, 4(1): 83-100.
[46] WANG Y, KNOLL W, DOSTALEK J. Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays[J]. Analytical Chemistry, 2012, 84: 8345-8350.
[47] ZHAO Yu, YE Mingqiang, CHAO Qiangguo, et al. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples[J]. Journal of Agricultural and Food Chemistry, 2009, 57(2): 517-524.
[48] BRAININA K Z, KOZITSINA A N. Hybrid electrochemical/magnetic assay for Salmonella typhimurium detection[J]. Sensors Journal, IEEE, 2010, 10(11): 1699-1704.
[49] LEE H J, KIM B C, KIM K W, et al. A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR ampli cation of aptamers[J]. Biosensors and Bioelectronics, 2009, 24(12): 3550-3555.
[50] LI Aihua, ZHANG Huiyuan, ZHANG Xin, et al. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosomeantibody complex and real-time uorescence quantitative PCR[J]. Journal of Separation Science, 2010, 33(21): 3437-3443.
[51] PAPPERT G, RIEGER M, NIESSNER R, et al. Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli[J]. Microchim Acta, 2010, 168(1/2): 1-8.
[52] WANG R, RUAN C, KANAYEVA D, et al. TiO2nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes[J]. Nano Letters, 2008, 8(9): 2625-2631.
[53] PAYNE M J, CAMPBELL S, PATCHETT R A, et al. The use of immobilized lectins in the separation of Staphylococcus aureus, Escherichia coli, Listeria and Salmonella spp. from pure cultures and foods[J]. Journal of Applied Bacteriology, 1992, 73(1): 41-52.
[54] GU H, HO P L, TSANG K W T, et al. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration[J]. Journal of the American Chemical Society, 2003, 125(51): 15702-15703.
Research Progress on Magnetic Nanomaterials for Separation of Foodborne Pathogenic Bacteria
HUANG Xiao-lin, XU Heng-yi*, XIONG Yong-hua, QU Feng, YANG Lin
(State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China)
Foodborne pathogenic bacteria are one of the major factors that influences food safety. Pathogens in limited numbers are not easy to directly detect with high sensitivity and specificity in food matrices via routine analytical methods. Magnetic nanomaterials with biological modification and functionalization can specifically recognize foodborne pathogenic bacteria in food samples. Target bacteria can be separated selectively with rapidity and high specificity by a magnetic field, which realizes the specific separation and enrichment of low numbers of pathogens in food samples, providing enriched pathogens with higher purity and quantity for further study. This paper reviews recent progress in applying magnetic nanomaterials for the separation and enrichment of foodborne pathogens.
magnetic nanomaterials; foodborne pathogenic bacteria; separation; enrichment
Q93
A
1002-6630(2014)11-0280-06
10.7506/spkx1002-6630-201411056
2013-06-10
国家自然科学基金面上项目(31271863);国家自然科学基金青年科学基金项目(81201691);“十二五”国家科技支撑计划项目(2011BAK10B06);2012年度高等学校博士学科点专项科研基金项目(20123601120005);江西省教育厅科技基金资助项目(GJJ13093)
黄小林(1988—),男,硕士研究生,研究方向为免疫磁分离。E-mail:hxl19880503@163.com
*通信作者:许恒毅(1981—),男,副研究员,博士,研究方向为食品安全与食品生物技术。E-mail:kidyxu@163.com