常双领
(北京物资学院信息学院,北京 101149)
一个新的Lie代数和它的应用
常双领
(北京物资学院信息学院,北京 101149)
通过构造一个新的Lie代数,利用它相应的Loop代数设计等谱Lax对,根据其相容性条件,得到了一族Lax可积方程族,其一种约化形式为著名的AKNS族.根据迹恒等式得到该方程族的Hamilton结构.利用该可积方程族可以进一步研究它的达布变换、对称、代数几何解等相关性质.
Lie代数;可积方程族;迹恒等式;Hamilton结构
借助于Lie代数设计等谱问题,根据相容性条件可以获得一系列的Lax可积的方程族.一些科研工作者经过辛勤的工作已经获得一些可积Hamilton方程族[1-8],并且研究了他们的非线性化、守恒律、达布变换等[9-10].寻求新的高维Lie代数和具有物理意义的可积系统是孤立子理论研究中的基本工作之一.本文首先构造了一个新的Lie代数,设计了一个含有六个位势函数的等谱问题,根据相容性条件和迹恒等式,获得具有Hamilton结构的可积方程族.该方程族是著名的AKNS方程族的扩展,是对可积系统的进一步完善和发展.
参考文献
[1]Guizhang Tu.The trace identity,a powerful tool for constructing the Hamiltonian structure of integrable systems[J].J.Math.Phys.,1989,302:330-338.
[2]郭福奎.Loop代数~A1的子代数与可积Hamilton方程族[J].数学物理学报,1999,19(5):507-512.
[3]Guo Fukui,Zhang Yufeng.Two unifed formulae[J].Physics Letters A,2007,366:403-410.
[4]Zeng Yunbo,Xiu Wen,Lin Runliang.Integration of the soliton hierarchy with self-consistent Sources[J]. Journal of Mathematical Physics,2000,408:5453-5490.
[5]Zhang Yufeng,Tam Honwah.A few integrable systems and spatial spectral transformations[J].Commun. Nonlinear Sci.Numer.Simulat.,2009,14:3770-3783.
[6]Chang Hui,Zhang Yufeng.A new multi-component matrix loop algebra and a multi-component integrable couplings of the NLS-MKdV hierarchy and its Hamiltonian structure[J].Chaos,Solitons and Fractals, 2009,39:473-478.
[7]梅建琴.4×4B-型KdV方程族[J].数学年刊:A辑,2012,33(2):161-174.
[8]夏铁成,张登朋,特木尔朝鲁.带有自相容源的屠族新可积耦合[J].数学物理学报:A辑,2012,32(5):941-949.
[9]Zhang Yu,Chang Hui,Li Na.Explicit N-fold Darboux transformation for the classical Boussinesq system and multi-soliton solutions[J].Physics Letters A,2009,373:454-457.
[10]Qu Changzheng,Yao Ruoxia.Liu Ruochen.Multi-component WKI equations and their conservation laws[J].Physics Letters A,2004,331:325-331.
A new Lie algebra and its applications
Chang Shuangling
(School of Information,Beijing Wuzi University,Beijing101149,China)
By constructing a new Lie algebra and its corresponding Loop algebra,an isospectral Lax pair is established whose compatibility condition gives rise to a Lax integrable hierarcy,whose reduced form is the well-known AKNS hierarchy.Its Hamilton structure is obtained by the use of the trace identity.Then,its Darboux transformations,symmetry,algebro-geometric solutions,and so on will be investigated further.
Lie algebra,trace identity,integrable hierarchy,Hamilton structure
O152
A
1008-5513(2013)06-0627-07
10.3969/j.issn.1008-5513.2013.06.012
2013-09-05.
常双领(1975-),硕士,研究方向:基础数学.
2010 MSC:45G15