刘 芳 苗 青 肖 婧 孙 琳 申 晨 焦伟伟 冯卫星 吴喜蓉 申 丹 申阿东
人谷胱甘肽-S-转移酶(hGSTs)是体内生物转化过程中Ⅱ相代谢酶的主要成员,在肝脏中含量最高。hGSTs由一个超基因家族编码,根据所编码酶蛋白化学性质、氨基酸顺序及酶动力学特性的不同可将其分为α、μ、π、δ、θ、κ、ζ和ω等8个家族成员[1]。其中μ亚型的GSTM1和θ亚型的GSTT1由于位于基因两侧的两段高度同源的序列发生同源重组而导致基因缺失(也称空白基因型)[2],在人群中的多态性表现为基因部分或全部缺失。研究发现GST基因多态性缺失除与肝癌、肺癌[3]、哮喘[4,5]及糖尿病[6]等疾病相关外,在药物的Ⅱ相代谢过程中也起着十分重要的作用。以抗结核的一线药物异烟肼为例,GST主要参与异烟肼代谢中的解毒过程,通过催化Ⅰ相代谢中产生的毒性中间代谢物与谷胱甘肽共价结合并排出体外而起到解毒作用。然而,GSTM1和GSTT1基因多态性缺失将使GST活性下降或失活,解毒能力相应丧失,最终导致肝毒性,致使该药物在抗结核治疗中终止和治疗失败[7],临床已停用。不同个体在基因水平上的差异,是造成个体间GST含量和活性差异、代谢表型差异以及种族地域差异的主要原因之一[8,9]。目前研究显示,中国汉族人群GSTM1和GSTT1基因缺失率较高,均高于40%[10~12]。因此,本研究以中国汉族儿童为研究对象,通过对GSTM1和GSTT1基因多态性的检测,初步了解中国汉族儿童GSTM1和GSTT1基因多态性分布特征,并判断代谢表型,丰富和完善中国汉族人群相关遗传学数据库,以期对不同个体制定合适的用药方案提供参考依据。
1.1 样本来源和选择 选择2005至2010年首都医科大学附属北京儿童医院门诊健康查体的汉族儿童,以进行血生化检测的剩余血样量能保证本研究需要量的血样作为研究样本。除外患有严重感染性疾病、自身免疫性疾病、内分泌系统疾病、遗传性及先天性疾病、HIV感染,并除外患有与GST基因相关的肝癌、肺癌、膀胱癌[3]、哮喘[4,5]、白内障[13]、糖尿病[6]、心血管[14]及精神病[15]等疾病患儿。
1.2 伦理审核 本研究经首都医科大学附属北京儿童医院伦理委员会审核通过。
1.3 实验方法
1.3.1 基因组DNA提取 取EDTA抗凝静脉血2 mL,采用改进的Miller盐析法提取全血中人基因组DNA,溶于TE溶液,经分光光度计测量浓度后,-20 ℃保存。
1.3.2 PCR扩增 根据文献[16]合成4对引物(表1),应用PCR扩增技术检测GSTM1和GSTT1的基因多态性。
引物GSTM1 和GSTT1基因反应体系:50~100 ng 基因组DNA,引物1 μL,12.5 μL 2×Taq PCR MasterMix(天根生化科技有限公司,KT201-02),补充去离子水至总体积为25 μL。反应条件:预变性94℃ 3 min,变性94℃ 30 s,退火30 s,延伸72℃ 1 min。循环数30个,72℃延伸5 min。
引物GSTM1 和GSTT1缺失的反应体系:50~100 ng基因组DNA,引物1 μL,12.5 μL Prime STAR HS(TaKaRa,DR010A),补充去离子水至总体积为25 μL。反应条件:预变性94℃ 3 min,变性98℃ 10 s,退火5 s,72℃延伸10 min,循环数40个,72℃延伸10 min。
PCR反应产物在1.5%琼脂糖凝胶(含0.5 μg·mL-1溴化乙锭)中130 V电泳30 min,在紫外反射交联仪上观察结果,应用凝胶成像系统拍照。依据扩增条带的有无,判定GSTM1和GSTT1基因型(图1)。实验结果经过反复PCR验证,以保证实验结果真实可靠。
表1 GSTM1和GSTT1基因多态性分析PCR引物
1.3.3GSTM1和GSTT1基因缺失拷贝数及代谢表型的判断 根据GSTM1和GSTT1基因缺失的拷贝数不同,可将基因型/代谢表型分为:①完全缺失基因型/慢代谢型:含有2个拷贝缺失突变的等位基因而使酶活性完全丧失(突变纯合子,即*0/*0)[17](图1A条带1a、b,图1B条带4a、b);②单拷贝缺失基因型/中间代谢型:具有一个单拷贝缺失突变的等位基因而使酶活性减弱(突变杂合子,即*1/*0)(图1A条带2a、b,图1B条带5a、b);③未缺失基因型/快代谢型:具有2个正常拷贝等位基因(野生型纯合子,即*1/*1),正常表型(图1A条带3a、b,图1B条带6a、b)。
图1GSTM1和GSTT1基因型及代谢表型的判断
Fig 1 Determination ofGSTM1/GSTT1 genotype and phenotype
Notes A:GSTM1; B:GSTT1; 1:GSTM1(*0/*0),GSTM1 deletion amplifying fragment was 4 748 bp; 2:GSTM1(*1/*0),GSTM1 gene amplifying fragment was 625 bp,GSTM1 deletion amplifying fragment was 4 748 bp; 3:GSTM1(*1/*1),GSTM1 gene amplifying fragment was 625 bp;4:GSTT1(*0/*0),GSTT1 deletion amplifying fragment was 3 106 bp;5GSTT1(*1/*0),GSTT1 gene amplifying fragment was 969 bp,GSTT1 deletion amplifying fragment was 3 106 bp;6GSTT1(*1/*1),GSTT1 gene amplifying fragment was 969 bp; a: referring to the PCR product of used primers for gene; b: referring to the PCR product of used primers for gene deletion, respectively. Genotypes were determined by the combination of gel electrophoresis of a and b
1.4 不同人群GSTM1和GSTT1基因多态性对比分析 以GSTM1和GSTT1为主题词,检索PubMed等数据库,收集亚洲人、黑种人和高加索人群的GSTM1和GSTT1基因多态性分布的文献,入选文献需有相关基因型的频率数据,与本研究汉族分析人群基因型数据进行比较。
1.5 统计学方法 检验各基因型频率是否符合Hardy-Weinberg遗传(HWE)平衡定律。基因型频率比较采用χ2检验。P<0.05为差异有统计学意义。采用SPSS 13.0软件进行统计分析。
2.1GSTM1和GSTT1基因多态性分布特征 786例汉族分析人群样本进行GSTM1和GSTT1基因型检测,其中男性486份,女性300份,年龄在0~14岁,平均年龄5.4岁。经反复实验和结果判读,全部样本均获得基因型判定结果。HWE平衡检验结果显示,GSTM1和GSTT1基因多态性分布符合HWE平衡定律(P>0.05)。
GSTM1和GSTT1完全缺失基因型/慢代谢型(*0/*0)的频率分别为59.3%(466/786例)和58.4%(459/786例);单拷贝缺失基因型/中间代谢型(*1/*0)的频率分别为34.0%(267/786例)和35.1%(276/786例);未缺失基因型/快代谢型(*1/*1)的频率分别为6.7%(53/786例)和6.5%(51/786例)。
2.2GSTM1与GSTT1基因多态性的联合表达χ2检验结果显示,GSTM1和GSTT1基因型在研究人群中的分布相互独立,无明显关联(表2)。
表2GSTM1与GSTT1基因多态性在汉族分析人群中联合表达情况(n)
Tab 2 Co-expression frequency ofGSTM1 andGSTT1 in Chinese Han children(n)
GSTT1*1/*1*1/*0*0/*0TotalGSTM1*1/*14173253*1/*016106145267*0/*031153282466Total51276459786
Notesχ2=0.261,P=0.967
2.3GSTM1与GSTT1基因多态性的性别差异 如表3所示,GSTM1和GSTT1基因多态性分布与性别无显著关联,差异无统计学意义。
表3GSTM1与GSTT1的基因多态性分布的性别差异分析[n(%)]
Tab 3 Genotype distribution ofGSTM1 andGSTT1 gene polymorphism between sexes[n(%)]
*1/*1*1/*0*0/*0GSTM1Male(n=486)35(7.2)1)161(33.1)1)290(59.7)1)Female(n=300)18(6.0)106(35.3)176(58.7)GSTT1Male(n=486)28(5.8)2)178(36.6)2)280(57.6)2)Female(n=300)23(7.7)98(32.7)179(59.7)
Notes 1) malevsfemale,χ2=0.694,P=0.707; 2) malevsfemale,χ2=1.887,P=0.389
2.4GSTM1和GSTT1基因多态性在不同种族的分布 本研究汉族分析人群GSTM1基因多态性分布与亚洲人和高加索人群接近,差异无统计学意义;与黑种人群差异有统计学意义;本研究分析人群GSTT1基因多态性分布与亚洲人接近,差异无统计学意义;与黑种人和高加索人群差异有统计学意义(表4)。提示GSTM1和GSTT1基因多态性分布具有明显的种族特异性。
表4 不同种族人群GSTM1和GSTT1基因纯合缺失率(%)
Tab 4Frequencies ofGSTM1 andGSTT1 gene homozygotes of deletions in worldwide populations(%)
RacenGSTM1(*0/*0)GSTT1(*0/*0)Ourstudy78659.358.4Asian(average)51.741.6SaudiArabia[18]51354.625.0Taiwan,China[19]57450.043.9Japan[19]12850.845.8Korean[20]54951.451.6Black(average)28.526.2SouthAfrica[21]9623.020.0USA[22]27128.017.0Namibia[19]13411.235.8Zimbabwe[21]15024.026.0Turkey[23]9832.722.4Tanzania[21]22033.025.0Brazil[24]23332.826.3Ethiopia[25]15343.837.3Gaucasian(average)53.021.1Danmark[16]20052.514.0USA[22]39252.016.0France[26]13949.022.0Autrialian[27]17157.317.5Italy[25]12049.228.3Spain[25]9455.327.7Brazil[24]13755.422.3
NotesGSTM1: our studyvsAsian,χ2=0.992,P=0.393; our studyvsBlack,χ2=18.727,P=0.000; our studyvsGaucasian,χ2=0.476,P=0.476;GSTT1: our studyvsAsian,χ2=3.180,P=0.085; our studyvsBlack,χ2=21.018,P=0.000; our studyvsGaucasian,χ2=28.643,P=0.000
同一种药物以标准化剂量应用于不同个体时,药物所产生的疗效和个体对药物的不良反应并不相同,尽管年龄、性别、饮食、肝功能、肾功能、基础疾病及联合用药等因素都可能影响药物的疗效和毒性作用,但目前认为20%~95%的个体差异由个体遗传背景所决定[28~30],遗传变异决定药物代谢酶在不同个体中含量和活性的差异,从而导致对药物反应的不同,是引起药物不良反应个体差异的重要原因之一。因此,了解GSTM1和GSTM1基因多态性及代谢表型在中国汉族儿童中的分布,指导临床针对不同基因型/代谢表型的个体实施个体化用药有重要意义。
hGSTs是体内生物转化最重要的Ⅱ相解毒酶之一,在外源性化学物质的体内转化Ⅱ相反应中,通过催化化学物质和谷胱甘肽结合反应而发挥解毒作用。异烟肼最严重的不良反应肝损害可导致抗结核治疗终止或失败。异烟肼可通过旁路途径水解产生肼,与乙酰肼在CYP2E1的作用下转化为乙酰偶氮、烯酮及乙酰阳离子等,均属于肝毒性物质。这类肝毒性物质必须通过Ⅱ相解毒酶GST催化,在肝脏内与谷胱甘肽共价结合并排出体外,从而起到解毒作用。GSTM1和GSTT1基因缺失多态性使GST活性降低或失活,导致药物代谢过程中产生的毒性中间代谢物不能被及时消除,可能是引起肝损害的原因之一[31~33]。
既往针对GSTM1和GSTT1基因多态性的研究多未将单拷贝缺失基因型(*1/*0)与完全缺失基因型(*0/*0)进行区分。本研究根据基因缺失的拷贝数,分为未缺失基因型即野生型纯合子(*1/*1)、单拷贝缺失基因型即突变杂合子(*1/*0)和完全缺失基因型即突变纯合子(*0/*0)。
既往国内学者研究显示,中国汉族人群GSTM1和GSTT1基因缺失率均高于40%[10~12]。本研究与既往研究结果基本一致。其中GSTM1 和GSTT1完全缺失基因型/慢代谢型(*0/*0)的频率分别为59.3%和58.4%。本研究同时显示,GSTM1和GSTT1单拷贝缺失基因型/中间代谢型(*1/*0)频率分别为34.0%和35.1%,提示有必要对中间代谢型(*1/*0)和慢代谢型(*0/*0)进行区分。
由于GST在药物代谢过程中具有重要的解毒作用,其活性的高低决定了酶的解毒功能的强弱,而GST活性的高低又与个体的遗传背景密切相关。因此,综合其他与药物代谢相关的因素,可根据个体遗传基因的特异性,实现药物的个体化治疗。个体GSTM1和GSTT1基因为完全缺失基因型/慢代谢型或单拷贝缺失基因型/中间代谢型时,由于其解毒功能较弱,在临床治疗时应适当减少用药剂量或延长用药间隔时间,从而避免发生药物的不良反应。个体携带GSTM1和GSTT1基因为未缺失基因型/快代谢型时,由于其解毒功能相对较强,在病情需要时可适当增加用药剂量或缩短用药间隔时间以提高临床疗效。鉴于性别对GSTM1和GSTT1基因多态性的影响不显著,因此临床上用药可不考虑性别因素。
文献对比分析显示,不同的种族人群GSTM1和GSTT1基因缺失率存在明显不同,提示Ⅱ相代谢中GST的解毒功能在不同种族也存在较大差别。而中国的抗结核药物剂量使用标准与WHO基本一致[34,35]。因此有必要制定适合中国汉族儿童特有的药物剂量及治疗方案,并结合不同基因型实施个体化治疗方案,从而提高药物的疗效。
本研究的不足之处和局限性:①GST仅是影响药物代谢的一项因素,具体的药物治疗方案还需要结合许多其他因素进行分析;②本研究未涉及异烟肼肝损害和GST基因多态性的量效关系,需进一步研究明确。
[1]Strange RC, Spiteri MA, Ramachandran S, et al. Glutathione-S-transferase family of enzymes. Mutat Res, 2001, 482(1-2): 21-26
[2]Bolt HM, Thier R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab, 2006, 7(6): 613-628
[3]Strange RC, Jones PW, Fryer AA. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett, 2000, 112-113: 357-363
[4]Lee YL, Lin YC, Lee YC, et al. Glutathione S-transferase P1 gene polymorphism and air pollution as interactive risk factors for childhood asthma. Clin Exp Allergy, 2004, 34(11): 1707-1713
[5]Tamer L, Calikoglu M, Ates NA, et al. Glutathione-S-transferase gene polymorphisms (GSTT1, GSTM1, GSTP1) as increased risk factors for asthma. Respirology, 2004, 9(4): 493-498
[6]Davis RL, Lavine CL, Arredondo MA, et al. Differential indicators of diabetes-induced oxidative stress in New Zealand white rabbits: role of dietary vitamin E supplementation. Int J Exp Diabetes Res, 2002, 3(3): 185-192
[7]Frieden TR, Sterling TR, Munsiff SS, et al. Tuberculosis. Lancet, 2003, 362(9387): 887-899
[8]Geisler SA, Olshan AF. GSTM1, GSTT1, and the risk of squamous cell carcinoma of the head and neck: a mini-HuGE review. Am J Epidemiol, 2001, 154(2): 95-105
[9]Cotton SC, Sharp L, Little J, et al. Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol, 2000, 151(1): 7-32
[10]Liu L, Li C, Gao J, et al. Genetic polymorphisms of glutathione S-transferase and risk of vitiligo in the Chinese population. J Invest Dermatol, 2009, 129(11): 2646-2652
[11]Lin GF(林国芳), Ma QW, Zha YL, et al. Genetic polymorphism of glutathione s-transferase T1 and M1 Shanghai "indigene" population. Carcinogenesis, Teratogenesis and Mutagenesis(癌变·畸变·突变), 2001, 13(1): 10-12
[12]Zheng TR(郑天荣), Zheng QH, Gong FS, et al. Gene deletion polymorphisms of GSTT1 and GSTM1 and susceptibility to stomach neoplasm. Journal of Practical Oncology(实用肿瘤杂志), 2002, 17(3): 155-157
[13]Sun L, Xi B, Yu L, et al. Association of glutathione S-transferases polymorphisms (GSTM1 and GSTT1) with senile cataract: a meta-analysis. Invest Ophthalmol Vis Sci, 2010, 51(12): 6381-6386
[14]Forgione MA, Cap A, Liao R, et al. Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation, 2002, 106(9): 1154-1158
[15]Bernardini S, Bellincampil, Ballerini S, et al. Glutathione S-transferase P1 *C allelic variant increases susceptibility forlate-onset Alzheimer disease: association study and relationship with apolipoprotein E epsilon4 allele. Clin Chem, 2005, 51(6): 944-951
[16]Buchard A, Sanchez JJ, Dalhoff K, et al. Multiplex PCR detection of GSTM1, GSTT1, and GSTP1 gene variants: simultaneously detecting GSTM1 and GSTT1 gene copy number and the allelic status of the GSTP1 Ile105Val genetic variant. J Mol Diagn, 2007, 9(5): 612-617
[17]Sprenger R, Schlagenhaufer R, Kerb R, et al. Characterization of the glutathione S-transferase GSTT1 deletion: discrimination of all genotypes by polymerase chain reaction indicates a trimodular genotype-phenotype correlation. Pharmacogenetics, 2000, 10(6): 557-565
[18]Al-Dayel F, Al-Rasheed M, Ibrahim M, et al. Polymorphisms of drug-metabolizing enzymes CYP1A1, GSTT and GSTP contribute to the development of diffuse large B-cell lymphoma risk in the Saudi Arabian population. Leuk Lymphoma, 2008, 49(1): 122-129
[19]Fujihara J, Yasuda T, Iida R, et al. Cytochrome P450 1A1, glutathione S-transferases M1 and T1 polymorphisms in Ovambos and Mongolians. Leg Med (Tokyo), 2009, 11(S1): 408-410
[20]Uhm YK, Yoon SH, Kang IJ, et al. Association of glutathione S-transferase gene polymorphisms (GSTM1 and GSTT1) of vitiligo in Korean population. Life Sci, 2007, 81(3): 223-227
[21]Dandara C, Sayi J, Masimirembwa CM, et al. Genetic polymorphism of cytochrome P450 1A1 (Cyp1A1) and glutathione transferases (M1, T1 and P1) among Africans. Clin Chem Lab Med, 2002, 40(9): 952-957
[22]Millikan R, Pittman G, Tse CK, et al. Glutathione S-transferases M1, T1, and P1 and breast cancer. Cancer Epidemiol Biomarkers Prev, 2000, 9(6): 567-573
[23]Yalin S, Hatungil R, Tamer L, et al. Glutathione S-transferase gene polymorphisms in Turkish patients with diabetes mellitus. Cell Biochem Funct, 2007, 25(5): 509-513
[24]Gattas GJ, Kato M, Soares-Vielra JA, et al. Ethnicity and glutathione S-transferase (GSTM1/GSTT1) polymorphisms in a Brazilian population. Braz J Med Biol Res, 2004, 37(4): 451-458
[25]Piacentini S, Polimanti R, Porreca F, et al. GSTT1 and GSTM1 gene polymorphisms in European and African populations. Mol Biol Rep, 2011, 38(2): 1225-1230
[26]Abbas A, Delvinquiere K, Lechevrel M, et al. GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: different pattern of squamous cell carcinoma and adencarcio-noma. World J Gastroenterol, 2004, 10(23): 3389-3393
[27]Gundacker C, Komarnicki G, Jagiello P, et al. Glutathione-S-transferase polymorphism, metallothionein expression, and mercury levels among students in Austria. Sci Total Environ, 2007, 385(1-3): 37-47
[28]Sharifzadeh M, Rasoulinejad M, Valipour F, et al. Evaluation of patient-related factors associated with causality, preventability, predictability and severity of hepatotoxicity during antituberculosis treatment. Pharmacol Res, 2005, 51(4): 353-358
[29]Sharma SK, Balamurugan A, Saha PK, et al. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med, 2002, 166(7): 916-919
[30]Magnus IS, Cristina RA. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1460): 1563-1570
[31]Roy B, Chowdhury A, Kundu S, et al. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 'null' mutation. J Gastroenterol Hepatol, 2001, 16(9): 1033-1037
[32]Leiro V, Fernndez-Villar A, Valverde D, et al. Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. Liver Int, 2008, 28(6): 835-839
[33]Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol, 2007, 47(1): 128-134
[34]The Subspecialty Group of Respiratory Diseases of the Society of Pediatrics, Chinese Medical Association(中华医学会儿科学分会呼吸学组). Diagnostic standards and therapeutic recommendations for pulmonary tuberculosis in children. Chin J Pediatr(中华儿科杂志), 2006, 44(4): 249-251
[35]Treatment of tuberculosis :guidelines for national programmes. Geneva: World Health Organization, 1993